
ECOLOGICAI

WATER

CONSTRUCTION MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 T: 781.278.3700 F: 781.278.5701 F: 781.278.5702 www.gza.com

November 18, 2025 File No. 01.0174955.30

Commonwealth Fusion Systems 148 Sydney Street Cambridge, Massachusetts 02139

Attention: Mr. Rich Holcomb, Head of Facilities and Construction, CFS

Re: Geotechnical Engineering Report

Proposed CFS-4 Development

11 Hospital Road

Devens, Massachusetts 01434

Dear Mr. Holcomb:

In accordance with our agreement executed on July 23, 2025, GZA GeoEnvironmental, Inc. (GZA) is pleased to submit to Commonwealth Fusion Systems (CFS, Client) this report summarizing the results of our geotechnical engineering evaluation for the proposed CFS-4 Development located within the CFS campus at 111 Hospital Road in Devens, Massachusetts (Site). The objectives of GZA's scope of work were to evaluate subsurface conditions and to develop geotechnical design and construction recommendations for the proposed development.

This report is subject to the Limitations set forth in **Appendix A** and the Terms and Conditions of our agreement.

BACKGROUND

PROJECT UNDERSTANDING

Our understanding of the project is based on correspondence with you and the project design team including Vanasse Hangen Brustlin, Inc. (VHB, project civil engineer), Jacobs (project architect) and Simpson Gumpretz & Heger (SGH, project structural engineer), Bond Brothers, Inc. (project construction manager) and the following:

- GZA's geotechnical design and construction phase services from 2020 through 2025
 related to certain CFS-2 development features, including pavement, retaining wall, an
 existing subsurface stormwater management system proximate to the south side of the
 CFS-4 development, and equipment pad areas;
- GZA's 2024 & 2025 geotechnical subsurface evaluation within portions of the CFS-3 development area adjacent to the east of the CFS-4 development, as summarized in GZA's geotechnical report dated xxxxx;
- An AutoCAD drawing depicting existing topography at the Site prepared by VHB with file name "Composite Existing Surface - EXIST and Stockpiles," transmitted to GZA on August 13, 2025:
- A 17-page draft set of civil plans for the CFS-4 development permit application prepared by VHB, transmitted to GZA on September 17, 2025; and
- Readily available on-line information, including aerial photographs and geologic maps.

Existing Site Conditions

For the purpose of this report, based on the existing site topography, setting, and proposed development features, the CFS-4 development Site is divided into two main areas: the Northern Area and Southern Area. Both areas are situated immediately west of the proposed CFS-3 development area. Summaries of existing site conditions for each area are provided below.

Northern Area (Includes the northern portion of the CFS-4 Building, Northern Equipment Pad, and Annex Building & Equipment Pad)

The Northern Area of the Site generally consists of predominantly undeveloped wooded land, with a former roadway area (Beech Street) at the northern end that was previously filled with about 2 to 3 feet of topsoil during the CFS-2 development project. The Northern Area is bordered: to the south by the Southern Area (described below), to the north by the former Beech Street and wooded land with an existing overhead 69kV electric transmission right-of-way (ROW) beyond, to the east by wooded and brush-covered land, and to the west by mostly wooded land with the end of the former Beech Street cul-de-sac area and a topsoil stockpile beyond. A granular soil stockpile is located at the southeastern portion of the Area.

Based on the existing topography plans, existing grades generally slope gradually down to the north and east, except for the aforementioned filled-in former Beech Street and the existing granular soil stockpile areas. Grades range from about elevation¹ (El.) 268 to 279, with the exception of the existing stockpile which rises to about El. 289.

Southern Area (Includes the southern portion of the CFS-4 Building, & Southern Equipment Pad, and Site Retaining Wall)

The Southern Area of the Site generally consists of wooded areas across the north and west, an existing soil stockpile in the east, and grassed areas at the central, eastern, and southern portions. Much of the Southern Area was previously called the "Ravine", which was filled in with up to about 26 feet of mostly topsoil during the CFS-2 development. The Southern Area is bordered to the west by an existing relatively steep wooded slope resource area (SRA, as defined in Massachusetts State Regulation No. 974 CMR 3.06), an existing soil stockpile to the east (with a gravel-paved contractor parking lot beyond), wooded/brush-covered land to the north, and an existing grass-covered slope to the south with an existing precast concrete subsurface stormwater infiltration structure (bottom of system at approximately El. 271) proximate to the south end of the Area.

Based on the existing topography plans, existing grades generally slope down gradually toward the east and more steeply to the west. Grades range from about El. 259 to 278, with the exception of the existing stockpile, which rises up to about El. 291.

_

¹ Elevations in this report are referenced to the North American Vertical Datum of 1988 (NAVD88) and are in feet.

Proposed Development

CFS-4 Building & Equipment Pads (Northern and Southern Areas)

We understand the proposed structures that will occupy the majority of the eastern two-thirds of the Site include a large (approximately 335 feet by 135 feet in plan area), two-level concrete pad which will support multiple pieces of industrial manufacturing equipment including:

- Water Processing-Related Equipment (Southern End of Pad): non-enclosed equipment, approximately 135 feet by 110 feet in plan area, with racks extending up to about 75 feet above the pad grade of approximately El. 269;
- Beryllium Containment Area (Central Portion of Pad): a building enclosure, approximately 125 feet by 90 feet in plan area, extending 70 feet above the pad with lower-level finished floor and first level finished floor elevations of 269 and 281, respectively, and;
- Burner Area (Northern End of Pad): non-enclosed equipment, approximately 135 feet by 135 feet in plan area, with a stack extending up to about 85 feet above the pad grade of approximately El. 281.

Additional site features include pavement in both the Northern and Southern Areas; as well as a subsurface stormwater infiltration structure in the Northern Area. Proposed finished grades surrounding the proposed building and pad perimeter appear to generally range from about El. 260 to El. 283. Based on our understanding of existing grades, it appears fills up to about 4 feet through most of the proposed building and pad area, as well as the proposed pavement areas, will be required to reach proposed finished grades.

Annex Building & Equipment Pad Areas (Northern Area)

We understand that the proposed Annex Building and associated equipment pad area consists of an approximately 230-by 30-ft total footprint area with the Annex building at the center, occupying an approximate 150-foot by 30-foot footprint area. The remaining areas to the north and south of the Annex will consist of equipment pads. The finished floor elevation of the building and equipment pads is conceptualized as El. 273.5.

Site Retaining Wall Area (Southern Area)

The site retaining wall in the Southern Area is conceptualized as an up to 16-foot-tall prefabricated modular block retaining wall approximately 5 feet east of the existing SRA, supporting fill soil behind the wall with a slope of up to 3-horizontal to 1-vertical (3H:1V) and having a bottom of wall at approximately El. 259. The wall type and vendor has not yet been selected.

A site locus plan is provided as **Figure 1**. The existing Site with the proposed development parcel and the aforementioned proposed development features are shown on **Figure 2**.

SUBSURFACE EXPLORATIONS

PREVIOUS EXPLORATIONS BY OTHERS

Multiple previous explorations were performed throughout the proposed property by others. A summary of the explorations performed within the proposed development area is discussed below.

2020 Test Borings

Twelve test borings (B-42, B-53, B-67 through B-73, and B-134 through B-136) performed between August 2020 and November 2020 by TRC Companies, Inc. (TRC) of Windsor, Connecticut, were considered relevant to the proposed CFS-4 development area. The borings were performed using hollow stem auger or cased drilling techniques to approximate depths of 23 to 55 feet below existing ground surface (bgs). Split-spoon samples were obtained and Standard Penetration Tests (SPTs) were performed continuously to about 10 feet bgs and at approximately 5-foot-intervals thereafter.

A monitoring well was installed at three borings, B-53, B-68 and B-73, during the drilling program. The borings were logged by TRC and/or Haley & Aldrich (H&A, geotechnical engineer for the CFS-2-related Buildings). Refer to the boring logs by TRC and H&A, a summary table by H&A, and monitoring well readings included in **Appendix B** for more information. The boring locations are approximately shown on **Figure 2**.

2020 Test Pits

Five test pits (TP-14, TP-16, TP-18, TP-120 and TP-121) performed on behalf of TRC between August 2020 and September 2020 by W.G McClellan and Sons of Fallentimber, Pennsylvania, were considered relevant to the proposed CFS-4 development area. The test pits were excavated to a depth of 12 feet bgs, except TP-121 which was terminated at 11.8 feet bgs due to the excavation sidewalls caving in. The test pits were observed and logged by TRC. Refer to the test pit logs included in **Appendix B** for more information. The test pit locations are approximately shown on **Figure 2**.

RECENT EXPLORATIONS BY GZA

2024 Test Borings

Three borings (GZ-5, GZ-9 and GZ-15), performed between October 28 and November 6, 2024 by New England Boring Contractors, Inc. (NEBC) of Derry, New Hampshire, were considered relevant to the CFS-4 development area. The borings were performed with an ATV drill rig using hollow stem auger and/or cased drilling techniques. The borings were advanced to depths ranging from 21 to 64 feet bgs, corresponding to bottom of boring elevations ranging from El. 215 to El. 243.

Split-spoon samples were obtained and SPTs were generally performed continuously between 4 and 10 feet bgs and at approximately 5-foot-intervals thereafter. SPTs were performed in general accordance with ASTM D-1586 (using a 2-inch outside-diameter sampler driven 24 inches by blows from a 140-pound hammer falling freely for 30-inches). The number of blows required to drive the sampler each 6-inch increment was recorded and the Standard Penetration Resistance (SPT N-value) was recorded as the sum of the blows over the middle 12 inches of penetration. Upon completion, test boring GZ-9 was backfilled with drill cuttings to existing grade. A monitoring well was installed in borings GZ-5 and GZ-15 during the drilling program.

A GZA representative observed and coordinated the test borings on a full-time basis, obtained soil samples from the test borings for laboratory testing, visually classified the soil samples using the Modified Burmister Soil Classification System, and prepared the boring logs. In addition, GZA screened soil samples for volatile organic compounds (VOCs) using a photoionization detector; results are noted on the logs provided in **Appendix B**. The exploration locations are approximately shown on **Figure 2**.

2025 Test Pits

GZA engaged Cryan Landscaping Contractors, Inc. of Attleboro, Massachusetts to perform eighteen test pits (TP-306 through TP-323) within and proximate to the proposed CFS-4 development area between August 4 and 7, 2025 using a tracked excavator. The test pits were excavated to depths between 3 and 14 feet bgs (depth to penetrate the topsoil layer or the practical extent of the excavation due to either excavation sidewall collapse or the extent of the excavator reach). The test pits were backfilled with the excavated soils in approximately 12-inch-thick lifts, each compacted with the excavator bucket.

2025 Test Borings

GZA engaged NEBC of Derry, New Hampshire to perform twenty-two test borings (GZ-109 through GZ-111, GZ-113 through GZ-116, GZ-118 through GZ-122, GZ-124 through GZ-133) proximate to the proposed development between August 18, 2025 and September 5, 2025. The borings were advanced to depths ranging from approximately 11 to 54 feet bgs, corresponding to bottom of boring elevations ranging from approximately El. 216 to El. 265.5.

Split-spoon samples were obtained and SPTs were performed continuously from ground surface to depths ranging between 4 and 29 feet bgs (through the fill, topsoil fill, or buried topsoil strata) and at approximately 5-foot-intervals thereafter. SPTs were performed in general accordance with ASTM D-1586 (using a 2-inch outside-diameter sampler driven 24 inches by blows from a 140-pound hammer falling freely for 30-inches). The number of blows required to drive the sampler each 6-inch increment was recorded and the Standard Penetration Resistance (SPT N-value) was recorded as the sum of the blows over the middle 12 inches of penetration. Upon completion, the test borings were backfilled with drill cuttings to existing grade.

A GZA representative observed and coordinated the 2025 test borings and test pits on a full-time basis, obtained soil samples from the test borings and test pits for laboratory testing, visually classified the soil samples using the Modified Burmister Soil Classification System, and prepared the boring and test pit logs. In addition, GZA screened soil samples in the test borings and test pits for volatile organic compounds (VOCs) using a photoionization detector; results are noted on the logs provided in **Appendix B**. The exploration locations are approximately shown on **Figure 2**.

GEOTECHNICAL LABORATORY ANALYSES

2020 Laboratory Results

Laboratory grain size analyses (gradation distribution) were performed on eleven soil samples obtained from the 2020 test borings considered relevant to this evaluation. The relevant 2020 laboratory results are included in **Appendix C**.

2024 Laboratory Results

Laboratory grain size analysis (gradation distribution) was performed on one soil sample obtained from one 2024 test boring considered relevant to this evaluation. The relevant 2024 laboratory results are included in **Appendix C**.

2025 Laboratory Results

Select soil samples obtained from the 2025 borings and test pits were submitted to GZA's soils laboratory subcontractor, Thielsch Engineering of Cranston, Rhode Island. Four laboratory grain size analyses (gradation and/or hydrometer

distribution) and three organic content determinations were performed. Laboratory results for the 2025 soil samples are included in **Appendix C**.

SUBSURFACE CONDITIONS

SOIL

Based on subsurface information from the relevant previous and recent borings and test pits, subsurface conditions within the proposed CFS-4 development area generally consist of topsoil, occasional subsoil, and/or fill overlying, in descending order, natural granular soils, glacial till, and bedrock. Due to the conditions observed in the explorations, separate subsurface condition summaries are provided for the two aforementioned areas: 1) Northern Area, and 2) Southern Area. A general description of each stratum for each area is provided below. Refer to the logs in **Appendix B** for specific conditions encountered at each exploration location and to the attached **Table 1** for a summary of the subsurface conditions encountered in the explorations. Subsurface conditions are expected to vary across the site within each Area.

Northern Area

- **Topsoil** Surficial layer with organic matter encountered in 18 of 19 explorations with thicknesses ranging from about 0.2 to 2.5 feet.
- **Subsoil** Relatively loose silty sand layer with roots encountered below the topsoil layer in one of the explorations (boring GZ-109) near the northeast end of the Site with a thickness of about 1.5-feet that extended to about 2 feet bgs.
- Granular Fill Encountered in 8 of 19 explorations below the topsoil to a depth of about 2 to 10.5 feet bgs (corresponding to approximately El. 259.5 to 267) with thicknesses ranging from 1.5 to 8 feet. The fill consisted of light brown to brown or occasionally brown to gray, fine to coarse or fine to medium sand with up to about 50 percent gravel, up to about 35 (but generally less than 20) percent silt, and trace amounts of roots/leaves. Occasionally the fill consisted of brown/light brown gravel with up to 50 percent fine to coarse sand, up to 35 percent silt, and trace amounts of roots. Six to seven inches of buried asphalt pavement was noted at the two borings within the former Beech Street area (GZ-110/110A and GZ-122) at depths of about 2.3 and 2.4 feet bgs in the fill stratum. SPT N-values ranged from 6 to 49 blows per foot (bpf), indicating loose to dense granular soil. In two test pits (TP-306 and TP-308) it was difficult to distinguish whether the material between about 1 and 5 feet bgs was fill or natural. Occasional boulders and occasional to more frequent cobbles were noted within some of the test pits within the fill.
- Natural Granular Soils Natural granular soils generally consisting of predominantly sand/gravel or sand with up to 35 percent silt including occasional silty sand and relatively thin sandy silt/clay seams and/or up to about 3.5-foot-thick layers between the granular soils at depths deeper than 13 feet bgs were encountered at each exploration below the topsoil or fill strata at a depth of about 0.5 to 10.5 feet bgs (corresponding to approximately El. 257 to 281.5). The natural soils were generally relatively thick and were only penetrated in three explorations indicating thicknesses of 33.5, 45, and 47.5 feet (corresponding to approximately El. 218.5 to 229). SPT N-values in the natural granular soils ranged from about 3 to 78 bpf, corresponding to very loose to very dense granular soils with one SPT N-value of 7 obtained in a clayey silt sublayer indicating medium stiff cohesive soil. The loose blow counts in the natural soils were encountered within the top 2 feet of the stratum

except for in boring GZ-110 where an initial loose blow count (SPT N-value of 9 bpf) was obtained during drilling without a positive head of drilling fluid from 13 to 15 feet bgs and a re-attempt at an offset boring (GZ-110A) at the same depth with a positive head of drilling fluid yielded a medium dense blow count (SPT N-value of 14 bpf). Occasional boulders and occasional to more frequent cobbles were noted within some of the natural granular soils.

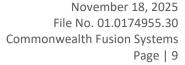
• Glacial Till — Glacial till was encountered in three borings at depths of about 43.5, 47.5, and 48.5 feet bgs (corresponding to approximately El. 218.5 to 229). The stratum generally consisted of green or olive to brown sand with up to 50 percent gravel and up to 20 percent silt or clayey silt. Aside from one blow count believed to be unrepresentative because it was obtained below the groundwater level without maintaining a positive head of drilling fluid inside the augers, the SPT N-values ranged from 21 to 37 bpf, indicating a medium dense to dense granular soil.

Southern Area

- **Topsoil** Topsoil was encountered in 6 of the 14 explorations performed prior to the CFS-2 development and in a total of six explorations performed after the CFS-2 development in locations east, west, and south of the Ravine. The topsoil in this area was encountered from ground surface to depths of about 0.2 to 2 feet bgs (corresponding to approximately El. 249.5 to 283).
- **Topsoil Fill** In addition to the naturally deposited surficial topsoil and occasional subsoil encountered in several explorations outside of the Ravine Area, Topsoil Fill placed during the CFS-2 development was encountered in 21 recent explorations in the Ravine Area, to depths of about 3 to 26 feet bgs (corresponding to approximately El. 248 to 270).
- Subsoil A relatively loose silty sand layer with roots was encountered either at ground surface or below the
 topsoil layer in two of the pre-CFS-2 development explorations (boring B-72 and test pit TP-120) with thicknesses
 of about 1.5- and 2-feet that extended to about 2 to 2.5 feet bgs. The subsoil in the Southern Area is generally
 believed to have been removed during the CFS-2 development.
- Granular Fill Granular fill was encountered in 15 of 41 explorations either at ground surface or below the topsoil and extended to a depth of about 0.7 to 24.5 feet bgs (corresponding to approximately El. 247.5 to 279) with stratum thicknesses ranging from about 0.7 to 16 feet. The fill consisted of light brown to brown or occasionally brown to gray, fine to coarse or fine sand with up to about 50 percent gravel, up to about 35 (but generally less than 20) percent silt, and trace amounts of roots. Occasionally the fill consisted of brown/light brown/gray gravel with up to 50 percent fine to coarse sand, and up to 20 percent silt. At one 2020 boring (B-69), near the bottom of the Ravine area prior to the CFS-2 earthwork, the top 2 feet of fill appeared to consist of sandy silt. Aside from weight-of-hammer (WOH, using a 140-pound hammer) advancement at 2020 boring B-42, which was noted to have been performed in known disturbed soil from a pre-excavation trench used to clear for unexploded ordnances and/or a utility, SPT N-values ranged from 2 bpf to practical split spoon refusal (50 blows over less than 6 inches), indicating very loose to very dense granular soil. Occasional concrete was noted in the fill layer. Occasional to frequent cobbles were noted in the fill layer.
- **Buried Topsoil** Topsoil, buried below an overlying fill layer, was encountered at one exploration (boring GZ-129) from about 10.5 to 16 feet bgs (corresponding to approximately El. 265 to 270.5).

- Natural Granular Soils Predominantly sand/gravel, sand, or silty sand with up to 35 percent silt and with an occasional relatively thin sandy silt seam and/or layer at deeper depths was encountered at each exploration either at ground surface or at locations that penetrated the topsoil, fill, subsoil, or buried topsoil layers (33 of 41 explorations) at a depth range of about 0 to 24.5 feet bgs (corresponding to approximately El. 247.5 to 283). The natural soils were generally relatively thick and were penetrated in seven explorations, with thicknesses ranging from about 12.5 to 45.5 feet. SPT N-values in the natural granular soils ranged from about 8 to greater than 100 bpf, corresponding to loose to very dense granular soils. We note that the loose blow counts in the natural soils were encountered within the top 2 to 5 feet of the stratum. Occasional boulders and occasional to frequent cobbles were noted within some of the natural granular soils.
- Glacial Till Glacial till was encountered in seven explorations at a depth range of about 13.5 to 47.5 feet bgs (corresponding to approximately El. 229 to 242). The glacial till stratum was reportedly penetrated in two explorations performed on behalf of TRC, with thicknesses of about 10 and 15 feet. The stratum generally consisted of green or olive to brown to gray fine to medium or fine to coarse sand with up to 50 percent silt and up to 35 percent gravel. SPT N-values ranged from 22 bpf to practical split spoon refusal (50 blows over less than 6 inches), indicating medium dense to very dense granular soil.
- Bedrock No bedrock coring was performed in the relevant subsurface explorations. Probable bedrock was noted in two of the explorations (borings B-53 and B-135)based on drilling resistance and/or cuttings during 1.5 to 2 feet of drilling advancement at depths of 44.5 and 53.5 feet (corresponding to approximately El. 216.5 and 231). At other portions of the CFS campus in areas where bedrock was cored, the bedrock typically consists of Phyllite.

GROUNDWATER


Groundwater level measurements and wet sample recoveries where obtained during the course of drilling indicated groundwater at a depth range of about 36 to 47 feet bgs in the Northern Area, corresponding to approximate El. range 230 to 233 feet; and at a depth range of about 18 to 42 feet bgs in the Southern Area, corresponding to approximate El. range 229 to 248.5. Groundwater was not encountered in the test pits.

Note that the groundwater level observed in the borings likely do not represent stabilized groundwater levels. Fluctuations in groundwater levels may occur due to variations in precipitation, season, site features and other factors different from those existing at the time of the explorations and water level measurements.

GEOTECHNICAL IMPLICATIONS OF SUBSURFACE CONDITIONS

The primary geotechnical issues for design and construction of the proposed development are:

• Presence of unsuitable materials, fill and loose soils — Due to their compressible and non-homogenous nature, the existing topsoil, topsoil fill, subsoil, buried topsoil, and fill (including debris/concrete foundations from previously demolished barracks buildings, if encountered) are considered unsuitable for support of building foundations, building slabs, equipment pads, and retaining wall foundations. In some locations within the proposed building areas, loose blow counts were also noted within the top portion of the natural granular soils. Due to the variability in gradation and relative density, the existing fill is difficult to distinguish from the natural granular soils in some areas at the Site.

Unless structural loads are transferred to more suitable natural bearing strata below the unsuitable materials, the unsuitable materials will need to be excavated and replaced with compacted structural fill prior to construction of shallow foundations and slabs on grade. Anticipated depths of over excavation (removal of unsuitable soils) include:

- The southern portion of the CFS-4 Building and southern CFS-4 equipment pad area: approximately 0 to 31.5 feet of over excavation anticipated below proposed exterior footings (to approximately El. 247.5 to 277), assuming bottom of footings will be 4 feet below proposed finished grade (El. 281 feet) for frost protection.
- o <u>Site retaining wall</u>: approximately 0 to 13.5 feet of over excavation anticipated below the lowest apparent finish grade in front of the wall base (assumed to be El. 259).
- The northern portion of CFS-4 Building and northern CFS-4 equipment pad areas: approximately 0 to 7.5 feet of over excavation anticipated below proposed exterior footings (to approximately El. 259.5 to 265), assuming bottom of footings will be 4 feet below finish grade (El. 269) for frost protection.
- Annex Building and adjacent equipment pad areas: approximately 0 to 4.5 feet of over excavation anticipated below proposed exterior footings (to approximately El. 265 to 269.5), assuming bottom of footings will be 4 feet below finish grade (El. 273.5) for frost protection.
- <u>Limitations on Reuse of On-site Soils</u> Some of the proposed excavated soils, particularly portions of the fill and upper portions of the natural granular soils have a relatively high silt content and may be difficult to reuse as structural fill, especially in wet/freezing conditions.
- <u>Boulders and Cobbles</u> Some of the subsurface explorations indicate the presence of cobbles and occasional boulders in the fill and/or natural granular soils strata. Boulders and cobbles should be accounted for when estimating excavation effort and in site cut/fill site balance considerations, as they may not be able to be reused as backfill within the building areas or utility trenches.
- <u>Stability of Temporary Slopes during Earthwork</u> The extent and depth of topsoil fill and buried topsoil (up to 26 feet deep) may impact the stability of temporary earthwork slopes during construction, particularly within the southern portion of the Site.

GEOTECHNICAL RECOMMENDATIONS

The geotechnical design and construction recommendations presented below are based on GZA's understanding of the currently proposed CFS-4 development area as described herein, and the 2021 International Building Code (IBC) and the Massachusetts Amendments to the 2021 IBC, 10th Edition (MSBC). The recommendations presented herein are subject to the limitations in **Appendix A**.

DESIGN

1. Foundations and Slabs

The existing topsoil, subsoil, topsoil fill, buried topsoil, and fill, as well as debris from previous buildings and abandoned utilities are considered unsuitable for support of the proposed building (CFS-4 & Annex buildings), equipment pads (south and north of the CFS-4 and Annex buildings), and site retaining wall foundations because of their potential for compression, heterogeneous nature, and variable density.

After removal of the unsuitable materials, the proposed structures may be supported on conventional shallow foundations and slabs-on-grade, bearing on densified natural granular soil subgrades, or upon compacted Structural

Fill (that is, Sand-Gravel Fill, Granular Fill, or Crushed Stone) placed in controlled lifts over natural densified granular soil subgrades. Refer to **Table 2** for recommended Structural Fill gradations.

Excavations for footings should include removal of unsuitable materials (as described above) down to the existing natural undisturbed granular soil stratum followed by proof compaction of the subgrade and replacement with compacted structural fill up to the bottom of footings or base slab base course. Foundation overexcavation may be required to be taken several feet below bottom of footing grade, depending on the proximity to observed loose zones and the extent of topsoil fill, buried topsoil, and/or fill as noted in the explorations. Refer to the Building and Equipment Pad Subgrade Preparation section of this report (see Item 1 under Construction Recommendations) for additional provisions.

Provided that foundation subgrades are prepared as described herein, the recommended maximum net allowable bearing pressure in tons per square foot (tsf) for the shallow footings bearing on the natural granular soils stratum or compacted Structural Fill placed over the densified natural soils layer is 3 tons per square foot (tsf).

Footings should be designed in accordance with the MSBC. Exterior footings and interior footings in unheated areas should bear at least 4 feet below the final exterior grades for frost protection. Proposed equipment pads should either bear 4 feet below the final exterior grades or alternatively on either non-frost susceptible soil (e.g. Sand-Gravel fill, Structural Fill containing less than 8-percent passing the No. 200 sieve and/or Crushed Stone wrapped in non-woven filter fabric) extending to 4 feet below final exterior grades or may incorporate the use of insultation (such as rigid insultation) to provide the equivalent frost protection while reducing the amount of frost susceptible soil below a pad area. GZA can provide more specific recommendations regarding frost protection design using rigid insulation upon request. Interior footings in heated areas should bear at least 18 inches below top of slab. In accordance with MSBC Section 1806.2, for footings less than three feet in least lateral dimension (width), the recommended allowable bearing pressure shall be 1/3 of the value indicated above, times the footing width in feet.

Slab-on-grade construction is recommended for the CFS-4 and Annex buildings on a base course consisting of a minimum 8-inch-thick layer of Sand-Gravel Fill or crushed stone wrapped in non-woven filter fabric (refer to **Table 2** for recommended gradations).

Although design structural loads are not available at this stage of design, we understand that the project structural engineer will increase the slab thickness and/or the steel reinforcing as required to adequately resist live loads and mitigate potential slab cracking due to the relatively high anticipated live loads in certain areas of the building associated with the proposed magnet manufacturing equipment and processes.

We recommend a vertical modulus of subgrade reaction (k_s) of 100 pounds per cubic inch (pci) for design of the slab-on-grade supported as recommended herein. This recommended value is based on empirical correlations and our experience on other projects with similar subsurface conditions. This modulus of subgrade reaction value is for loading applied over a 1-foot by 1-foot square area and must be adjusted for the actual size and geometry of the loaded area prior to use in analysis.

2. Foundation Settlement

Post-construction settlement for the proposed building foundations is anticipated to be less than 1 inch and differential settlement (between adjacent new columns) less than about ½ inch, provided that subgrades are prepared and foundations are designed and constructed as recommended herein.

3. Geotechnical Seismic Design Parameters

Based on the criteria of MSBC Section 1806.4 and Figure 1806.4, a qualitative liquefaction assessment was performed using SPT N-values, soil type, and estimated fines content from soil samples collected from the borings. The soils at the Site are not considered susceptible to liquefaction based on the criteria set forth in the MSBC.

The SPT N-values from the boring were used to evaluate seismic Site Class in accordance with Section 1613.5.5 of the MSBC, and the IBC. Based on this evaluation, we recommend <u>Site Class D</u> be used for seismic design. In accordance with Table 1604.11 of the MSBC, the mapped seismic design factors for the town of Shirley (which is the nearest municipality to the proposed WHX improvements that the village of Devens is partially encompassed by) are:

- S_s = 0.307, and
- $S_1 = 0.071$

Seismic loads on foundation walls should be calculated based on MSBC Section 1613.3.3(1) and (2), using the following parameters:

- Total Soil Unit Weight: 130 pcf
- Site Coefficient, F_a = 1.6
- Site Coefficient, F_v = 2.4

Based on the above, and in accordance with MSBC/IBC Section 1613.3.4, the recommended seismic design spectral response acceleration parameters are:

- $S_{DS} = 0.327$, and
- $S_{D1} = 0.114$

4. Lateral Earth Pressures

Retaining walls, buried foundation walls, and other permanent retaining structures subjected to unbalanced earth-loading conditions should be designed to resist lateral earth pressures. We recommend the following design criteria:

a) For the purpose of evaluating lateral earth pressures for retaining walls or other below-grade walls with unbalanced earth loading, we recommend the following equivalent weights:

flexible (cantilever) walls
 45 pounds/cubic foot (pcf)

rigid walls
 65 pcf

These values are for horizontal backfill and assume that the walls are backfilled with free draining soils such as Granular Fill (provided it has less than 8 percent passing sieve No. 200) or Sand Gravel Fill within at least 3 feet of the walls and that adequate drainage is provided (via weepholes and/or continuous drains behind the wall base that discharge via gravity at the wall ends) such that no water pressure acts at the back of the wall. Where the calculated earth pressure behind the wall is less than 250 pounds per square foot (psf), it should be increased to 250 psf to account for stresses created by compaction within 5 feet of the wall. This pressure does not account for surcharge loads from large equipment such as cranes and concrete trucks. Walls should also be designed for appropriate surcharge and seismic loads per Section 1807.2 of the MSBC.

- b) The recommended coefficient of friction to resist sliding between mass concrete/formed concrete and natural soils or compacted Structural Fill is 0.4.
- c) The minimum factor of safety for sliding and overturning under static loads should be 1.5 in accordance with MSBC Section 1807.2.3. Passive pressure at the toe of the walls should not be included as a resisting force when analyzing for overturning and sliding.

Once the wall type has been selected for the retaining wall in the Southern Area, the recommendations presented above should be re-evaluated. In addition, most prefabricated modular walls are proprietary and should be designed by the selected vendor. Typically, the vendor is provided with the allowable net bearing capacity and a check on global stability by the engineer, both of which are provided herein in Design Item 1 above and Design Item 5 below. GZA should be retained to prepare performance specifications for bidding the wall type and to review construction (or design) submittals for the selected wall type and vendor.

On-site finished slopes should be no steeper than 2.5 horizontal to 1 vertical. If steeper slopes are required, GZA can provide recommended slope treatments and/or slope stabilizing measures upon request. Stormwater runoff should be controlled so as not to undermine or erode the slope; typically, stormwater control on slopes is provided with swales at the top and bottom of the slope.

5. Global Slope Stability (Western SRA)

GZA performed two-dimensional global stability analyses using SLOPE/W computer software to evaluate conditions representative of the proposed slope proximate to the existing SRA at the southwest portion of the Site, which coincides with the proposed site retaining wall. The results of our analysis indicate a factor of safety (FS) for global stability of greater than 1.5, which is the minimum FS typically considered acceptable for permanent slopes of this type under static conditions. We note that our analyses discounted the presence of surficial concrete slabs at the top end of the computed failure surface and/or slope vegetation that would otherwise improve near-surface slope stability, which is conservative. Refer to **Appendix D** for the evaluation results.

6. Pavement

Refer to the construction recommendations item No. 2 for pavement-related recommendations regarding unsuitable soil removal. Existing inorganic fill may remain in place below proposed paved areas as long as the fill is densified in place as described in Construction Recommendation Item 2 below. The following pavement cross-sections are recommended for proposed asphalt paved areas (not including loading docks):

	Minim	um Thicknesses
	Car Parking	Truck Loading ¹
Finish Course	1½ inches	1½ inches
Binder Course	2 inches	2½ inches
Sand-Gravel Base Course	10 inches	12 inches

Note: 1) Truck loading does not include additional loads from overweight trucks for transport of constructed magnets by truck via the haul road from the CFS-3 building.

7. Permanent Groundwater Control

Based on groundwater level measurements from observation wells and observations of groundwater levels noted on the boring logs, groundwater is expected to be approximately 9.5 to 47.5 feet below the proposed bottom of foundation elevations, based on foundations proposed to bear at approximately El. 258 to 277. These groundwater levels are sufficiently low enough to eliminate the need for perimeter drains or other permanent groundwater controls for the buildings and slabs. However, in accordance with MSBC 1805.2, provisions should be made to dampproof below grade portions of foundations and to slope exterior grades away from the buildings and equipment pads to the extent practical to divert stormwater away.

CONSTRUCTION

1. Building, Equipment Pad, & Retaining Wall Subgrade Preparation

Remove all existing topsoil, subsoil, existing fill (including previously disturbed natural granular soils), buried topsoil/subsoil, topsoil fill, foundations, demolition debris, and abandoned utilities (unsuitable bearing materials) within the zone of influence below proposed building, pad, and retaining wall areas down to undisturbed natural granular soils. The zone of influence is defined by a 1 horizontal to 1 vertical (1H:1V) line sloping downward and outward from 1 foot laterally outside the bottom exterior edge of the footings, pads, and wall base blocks and intersecting the undisturbed natural granular soil subgrade.

Removal of unsuitable soils below the buildings, equipment pads, and retaining walls should include native soils that have been disturbed by previous excavations by others to remove previous building foundations. Additionally, for proposed equipment pad areas which will bear shallower than 4 feet from proposed finished grades following the removal of unsuitable bearing soils, if in the opinion of the geotechnical engineer the natural granular soils contain greater than 8 percent fines within 4 feet of proposed finished grades, excavation should continue to the extent required to install non-frost susceptible materials to the equivalent frost protection level as 4 feet of footing embedment below proposed final grades. Non-frost susceptible materials should consist of Sand-Gravel fill, Structural Fill containing less than 8-percent passing the No. 200 sieve, and/or Crushed Stone wrapped in non-woven filter fabric.

Where practical, final excavation should be undertaken using a smooth-edged bucket to limit disturbance to the natural subgrades. Proof compact the exposed natural soil subgrade prior to placement of Structural Fill with at least ten passes of a minimum 10,000 pound (minimum static weight) vibratory roller.

Weak and unstable areas that are observed during proof compaction should be over-excavated and replaced with compacted Structural Fill (Granular Fill, Sand-Gravel, or Crushed Stone wrapped in filter fabric).

Some of the soils at the bottom of the excavation and at the intermittent subgrade levels, particularly those with higher silt content, will be susceptible to disturbance during excavation/earthwork performed in wet conditions. Excavations and earthwork for subgrade preparation should be sequenced and conducted in such a way to minimize disturbance of subgrades. Equipment (other than compaction equipment) should not operate directly on the final footing subgrade to limit disturbance. Where footing subgrades are silty and/or easily disturbed when wet, they may require a protective working mat, which should consist of 6-inches of compacted Sand Gravel fill or 4-inches of compacted Crushed Stone. Recommended gradations and compaction equipment/methodology for Crushed Stone and Sand Gravel are provided in **Tables 2** and **3**, respectively.

Darcant of

Footing, slab, pad, and retaining wall subgrades should be protected from frost at all times during construction. We recommend that a qualified geotechnical engineer provide full-time observation of earthwork below the footing/slab/base block level to evaluate the subgrade for suitability for building and retaining wall support, and to monitor proof compaction of the exposed natural soil subgrade as well as subsequent fill placement and compaction.

2. Pavement Subgrade Preparation

Remove topsoil, subsoil, buried topsoil, topsoil fill, and other unsuitable material containing organics to at least 2 ½ feet below proposed final pavement grade for standard-duty pavement areas. Remove existing inorganic fill to the minimum depth required to accommodate Finish, Binder, and Sand-Gravel base course. Proof-roll the existing subgrade with a minimum of six passes of a vibratory drum roller (with a minimum static drum weight of 10,000 pounds). Any weak, unstable or soft spots identified during proof-rolling should be excavated and replaced with compacted Structural Fill.

3. Placement and Compaction of Structural Fill Materials

Recommended gradations for off-site fill materials are provided in **Table 2**. Structural Fill should consist of off-site Granular Fill, Sand-Gravel, or Crushed Stone. Off-site fill for the Southern Area retaining wall should be in accordance with the recommendations of the selected wall vendor.

Use of %-inch Crushed Stone, in lieu of soil fill, at the bottom of excavations can aid in dewatering operations, where required. Crushed Stone greater than 4 inches in thickness should be wrapped in non-woven filter fabric (Mirafi 140N or equivalent).

Place Structural Fill in lifts and compact in accordance with the guidelines presented in **Table 3**, while meeting the recommended minimum degrees of compaction presented below. We recommend that a qualified geotechnical engineer observe placement and compaction of fill in the influence zone of building foundations and slabs to assess compliance with design bearing assumptions.

The recommended minimum degree of compaction of soils, based on percentage of maximum dry density as defined by ASTM D-1557, is specified below for different areas.

	Percent of
	Maximum
<u>Fill Area</u>	Dry Density
Within Building Areas and Below Foundations and Slabs	95
Behind Retaining Walls	95
Utility Trench Backfill	95
Pavement Base Course and within 2 feet of bottom of Pavement	95
More than 2 feet below bottom of Pavement	92
(and outside of Building influence zone)	

Crushed Stone should be placed in lifts, with each lift compacted to an unyielding surface. Recommended maximum loose lift thickness and minimum number of passes of compaction equipment for Structural Fill are provided in **Table 3**.

Compaction within 5 feet of building walls and site retaining walls should be performed using a hand-operated vibratory roller or plate compactor. Backfill and compact all fills at approximately similar elevations on each side of foundation walls to avoid unbalanced loading. When temperatures may fall below 32 degrees Fahrenheit, concrete footings and slabs, as well as footing and slab subgrades should be protected from frost at all times. Fill should not be placed over frozen soil.

4. Construction Dewatering

Based on the groundwater level observed at the Site, groundwater is not anticipated to be encountered during construction. Limited temporary dewatering due to influx or runoff from precipitation events may on occasion be required within open excavations during construction. Grades surrounding excavations should be pitched away from the excavation, and temporary berms and trenches used to divert runoff away from excavations during construction. We anticipate that dewatering, if required, can be achieved using localized sumps, utilizing on-site reinjection of pumped water. Discharge of pumped groundwater off-site (while not anticipated) will need to be performed in accordance with all federal, state, and/or local regulations.

5. Excavation Slopes and Shoring

The Owner and the Contractor should make themselves aware of and become familiar with applicable local, state, and federal safety regulations, including the current Occupational Safety and Health Administration (OSHA) Excavation and Trench Safety Standards. Construction site safety generally is the sole responsibility of the Contractor, who shall also be solely responsible for the means, methods, and sequencing of construction operations. We are providing this information solely as a service to our client. Under no circumstances should the information provided below be interpreted to mean that GZA is assuming responsibility for construction site safety or the Contractor's activities; such responsibility is not being implied and should not be inferred.

The Contractor should be aware that slope height, slope inclination, or excavation depths (including utility trench excavations) should in no case exceed those specified in local, state, or federal safety regulations, e.g., OSHA Health and Safety Standards for Excavations, 29 CFR Part 1926, or successor regulations; such regulations are strictly enforced and, if they are not followed, the Owner, Contractor, and/or earthwork and utility subcontractors could be liable for substantial penalties.

If any excavation, including a utility trench, is extended to a depth of more than 20 feet, it will be necessary to have the side slopes designed and stamped by a professional engineer registered in the Commonwealth of Massachusetts, and retained by the Contractor.

If sufficient space is not available to safely lay back excavations in accordance with OSHA regulations, a temporary earth support system will be required to support the excavation and maintain existing structures and utilities that are adjacent to proposed excavations. Temporary earth support systems, if required, should be selected by the site Contractor and designed by an experienced Professional Engineer registered in the Commonwealth of Massachusetts, and retained by the Contractor.

As a safety measure, it is recommended that all vehicles and soil piles be kept a lateral distance away from the top edge of the excavation at least equal to the slope height. Also, the exposed slope face of open-cut excavations should be protected against erosion and the elements.

6. Reuse of On-Site Materials

On site materials anticipated to be excavated during construction include fill and natural granular soils.

Based on visual and laboratory soil classifications, some of the existing inorganic on-site granular fill and the natural granular soils contain less than approximately 15 percent fines (primarily silt) and in many cases meet the gradation requirements for Granular Fill and therefore, may be used as Structural Fill.

The existing inorganic fill and natural granular soils that contain more than 15 percent silt do not meet the gradation requirements for Granular Fill. However, if weather conditions are favorable, the more silty existing fill and/or natural granular soils may be reused on site as a substitute for Structural Fill, provided that the soil is free from deleterious or organic matter, topsoil, roots, and particles greater than 6 inches in greatest dimension, its moisture content is controlled such that it can be placed in stable lifts and compacted to the degree recommended herein.

The Contractor should anticipate the need to import Sand-Gravel for the slab and pavement base course layers. The existing fill is not expected to meet the gradation requirements for Sand-Gravel Fill unless it is processed to remove boulders and large cobbles to produce a 3-inch-minus material.

Excess soil generated during construction that cannot be reused on-site should be disposed of in accordance with applicable local, state and federal regulations.

FINAL DESIGN AND CONSTRUCTION

We trust that the information presented herein addresses your current needs related to the geotechnical aspects of design and construction of the proposed CFS-4 development at this Site for permitting purposes.

Due to the former structures on site and given the amount of disturbance, reworking, and filling that the on-site soils may have been subjected to, we recommend that you retain GZA during foundation and site earthwork construction to observe subgrade conditions for consistency with our recommendations. It should also be noted that the Massachusetts State Building Code requires all foundation subgrades to be observed by a registered Professional Engineer or his/her representative. GZA's familiarity with the Site during multiple design and construction phases for the CFS campus and other nearby Devens sites will allow us to share lessons learned and help avoid unnecessary construction delays related to earthwork and foundation construction.

We appreciate the opportunity to work with you on this phase of the project. GZA looks forward to our continued involvement. Please call Michael Ostrowski at 781-603-5934 or Marty Rodick at 781-983-1604 or with any questions.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

Michael J. Ostrowski, E.I.T.

Project Manager

Terese M. Kwiatkowski, P.E.

Consultant/Reviewer

Martin A. Rodick, P.E. Principal-in-Charge

Attachments: Tables

Figures

Appendix A – Limitations

Appendix B - Relevant Previous (2020 & 2024) and Recent (2025) Subsurface Exploration Data

Appendix C - Relevant Previous (2020 & 2024) and Recent (2025) Laboratory Results

Appendix D – Slope/w Evaluation Results

 $J: 170,000-179,999\\ 174955\\ 130_CFS-4-Deven\ MA_Geotech\ Report\\ 2025-11-18-CFS-4\ Geotechnical\ Report\\ 174955.30_CFS-4-Deven\ MA_Geotech\ Report\ DRAFT_2025-11-18.docx$

ENVIRONMENTAL

ECOLOGICAL

WATER.

CONSTRUCTION MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 T: 781.278.3700 F: 781.278.5701 F: 781.278.5702

www.gza.com

TABLES

TABLE 1

SUMMARY OF SUBSURFACE EXPLORATIONS PROPOSED CFS-4 DEVELOPMENT AREA 111 HOSPITAL ROAD DEVENS, MA GZA File No. 01.0174955.30 Proposed CFS-4 Development Area November, 2025 Page 1 of 2

						DEPT	H TO / ELEVAT	ION OF FEATU	RE OR TOP OF	STRATUM (FT)	2,3					
Area of Site	Exploration ID	Exploration Type	Year Performed	Ground Surface	Bottom of Exploration	Refusal ⁴ (Drilling or Sampler)	Topsoil / Topsoil Fill	Subsoil ⁵	Fill	Natural Granular Soils ⁶	Glacial Till	Bedrock	Ground-water Reading ⁷	Notes	Nearby Development Feature(s)	Exploration in "Ravine" Area? (Y/N)
	B-73 (MW-5)	boring	2020	0 / 277.6	53.6 / 224	-/-	0 / 277.6	-/-	-/-	1 / 276.6	48.5 / 229.1	-/-	47 / 230.6	Loose blow counts: 0 to 4 ft in topsoil and top of natural soil, SS refusal at 41.8 ft, See Note 8, MW installed	CFS-4, PVT	N
	GZ-110/110A	boring	2025	0 / 271	26 / 245	-/-	0 / 271	-/-	2 / 269	6.9 / 264.1	-/-	-/-	-/-	Buried asphalt: 2.3 to 2.9 ft, GZ-110 loose blowcounts: 2 to 4 ft in fill and 13 to 15 ft in natural sand, GZ-110A medium dense blowcount: 13 to 15 ft (water added)	CFS-4, PVT, SWB	N
	GZ-111	boring	2025	0 / 269	11 / 258	-/-	-/-	-/-	0 / 269	4.4 / 264.6	-/-	-/-	-/-	-	CFS-4, PVT	N
	GZ-119	boring	2025	0 / 270	21 / 249	-/-	0 / 270	-/-	-/-	0.8 / 269.2	-/-	-/-	-/-	V. loose blow count(s): 0 to 4 ft in topsoil & top of natural soil (sand)	CFS-4, PVT	N
	GZ-120	boring	2025	0 / 277.5	12 / 265.5	-/-	0 / 277.5	-/-	-/-	0.4 / 277.1	-/-	-/-	-/-	-	CFS-4, PVT	N
Ø	GZ-121	boring	2025	0 / 269	22 / 247	-/-	0 / 269	-/-	0.8 / 268.2	4 / 265	-/-	-/-	-/-	Sand/Clayey silt: 13.5 to 17 ft between natural granular strata	CFS-4	N
Are	GZ-122	boring	2025	0 / 270	53.8 / 216.2	-/-	0 / 270	-/-	2.4 / 267.6	10.4 / 259.6	43.5 / 226.5	-/-	37.2 / 232.8	Asphalt pavement in fill: 2.4 to 2.9 ft, clayey silt: 25.8 to 26.4 ft within natural granular strata, possible loose blow count: 45 to 47 ft in glacial till (no water added)	CFS-4, PVT	N
-	TP-315	test pit	2025	0 / 272.5	8 / 264.5	-/-	0 / 272.5	-/-	-/-	2 / 270.5	-/-	-/-	-/-	-	CFS-4	N
e	TP-317	test pit	2025	0 / 277	3 / 274	-/-	0 / 277	-/-	-/-	1.5 / 275.5	-/-	-/-	-/-	Topsoil Fill: 0 to 1.5 ft	CFS-4	N
<u>ج</u>	GZ-125	boring	2025	0 / 269	21 / 248	-/-	0 / 269	-/-	0.2 / 268.8	4 / 265	-/-	-/-	-/-	-	Annex	N
L Z	GZ-126	boring	2025	0 / 269	22 / 247	-/-	0 / 269	-/-	0.6 / 268.4	2 / 267	-/-	-/-	-/-	Clayey Silt: 13.5 to 15.5 ft between natural granular strata	Annex, PVT	N
l 8	GZ-127	boring	2025	0 / 269	22 / 247	-/-	0 / 269	-/-	0.3 / 268.7	3.7 / 265.3	-/-	-/-	-/-	possible boulder: 1.8 to 3 ft, Clayey Silt: 18.5 to 22 ft below natural granular stratum	Annex, PVT	N
	TP-14	test pit	2020	0 / 270.3	12 / 258.3	-/-	0 / 270.3	-/-	-/-	0.4 / 269.9	-/-	-/-	-/-	-	Annex, PVT	N
	GZ-15 (OW)	boring	2024	0 / 266	51 / 215	-/-	0 / 266	-/-	0.2 / 265.8	2.3 / 263.7	47.5 / 218.5	-/-	35.8 / 230.2	Observation well installed	PVT	N
	GZ-109	boring	2025	0 / 259	17 / 242	-/-	0 / 259	0.6 / 258.4	-/-	2 / 257	-/-	-/-	-/-	V. loose/loose blow counts: 0 to 4 ft in topsoil/subsoil/top of natural soil (sand)	PVT	N
	TP-18	test pit	2020	0 / 282.1	12 / 270.1	-/-	0 / 282.1	-/-	-/-	0.5 / 281.6	-/-	-/-	-/-	-	PVT	N
	TP-306	test pit	2025	0 / 267	13 / 254	-/-	0 / 267	-/-	-/-	1.5 / 265.5	-/-	-/-	-/-	Possible fill or Sand/Gravel: 1.5 to 4 ft	SWB, PVT	N
	TP-307	test pit	2025	0 / 269	8 / 261	-/-	0 / 269	-/-	-/-	0.5 / 268.5	-/-	-/-	-/-	-	SWB, PVT	N
	TP-308	test pit	2025	0 / 268.5	13 / 255.5	-/-	0 / 268.5	-/-	-/-	1 / 267.5	-/-	-/-	-/-	Possible fill or Sand/Gravel: 1 to 5 ft	PVT, SWB	N

TABLE 1

SUMMARY OF SUBSURFACE EXPLORATIONS PROPOSED CFS-4 DEVELOPMENT AREA 111 HOSPITAL ROAD DEVENS, MA GZA File No. 01.0174955.30 Proposed CFS-4 Development Area November, 2025 Page 2 of 2

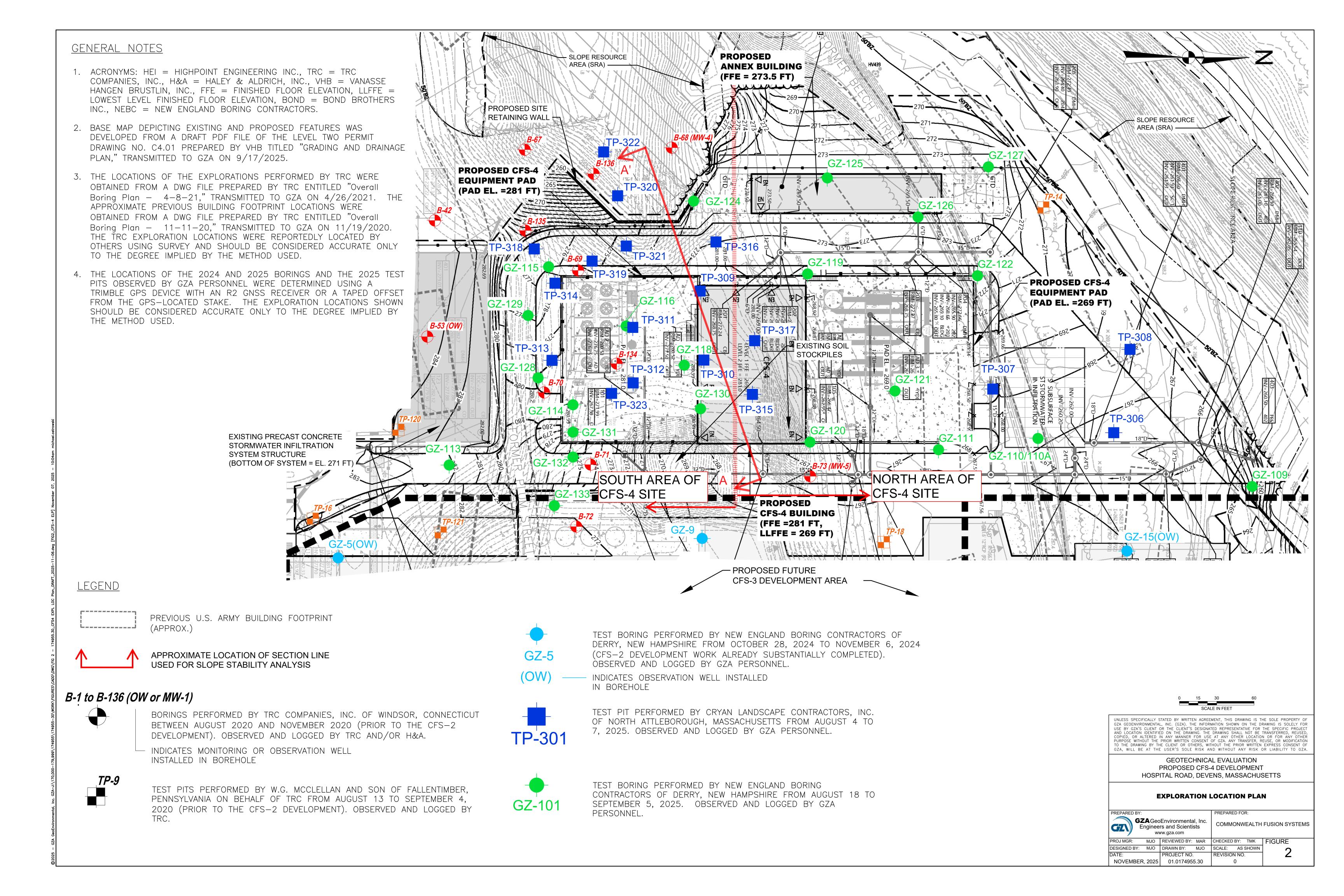
				DEPTH TO / ELEVATION OF FEATURE OR TOP OF STRATUM (FT) 2,3												
Area of Site	Exploration ID	Exploration Type	Year Performed	Ground Surface	Bottom of Exploration	Refusal ⁴ (Drilling or Sampler)	Topsoil / Topsoil Fill	Subsoil ⁵	Fill	Natural Granular Soils ⁶	Glacial Till	Bedrock	Ground-water Reading ⁷	Notes	Nearby Development Feature(s)	Exploration in "Ravine" Area? (Y/N)
	B-69	boring	2020	0 / 253.7	25 / 228.7	-/-	-/-	-/-	0 / 253.7	6 / 247.7	-/-	-/-	18.9 / 234.8	Loose blow count: 0 to 2 ft in probable fill	CFS-4, PVT	N
	B-70	boring	2020	0 / 260.8	25 / 235.8	-/-	-/-	-/-	0 / 260.8	6 / 254.8	-/-	-/-	19.8 / 241	Loose blow count: 0 to 2 ft in probable fill	CFS-4, PVT	N
	B-71	boring	2020	0 / 254.5	27 / 227.5	-/-	0 / 254.5	-/-	-/-	2 / 252.5	-/-	-/-	-/-	Loose blow count: 0 to 2 ft in topsoil	CFS-4, PVT	N
	B-134	boring	2020	0 / 254.1	37 / 217.1	-/-	0 / 254.1	-/-	-/-	1/253.1	15 / 239.1	-/-	-/-	See note 8	CFS-4	N
	GZ-114	boring	2025	0 / 273	29 / 244	-/-	0 / 273	-/-	19.5 / 253.5	24.5 / 248.5	-/-	-/-	-/-	Topsoil fill: 0 to 19.5 ft	CFS-4, PVT	Υ
	GZ-115	boring	2025	0 / 279	26 / 253	-/-	0 / 279	-/-	-/-	22 / 257	-/-	-/-	-/-	Loose blow count(s): 5 to 7 ft in topsoil fill, Topsoil fill: 0 to 22 ft	CFS-4, PVT	Υ
	GZ-116	boring	2025	0 / 274	29 / 245	-/-	0 / 274	-/-	-/-	26 / 248	-/-	-/-	-/-	Topsoil fill: 0 to 26 ft	CFS-4	Υ
	GZ-118	boring	2025	0 / 272.5	37 / 235.5	-/-	0 / 272.5	-/-	-/-	19.5 / 253	-/-	-/-	-/-	Topsoil fill: 0 to 19.5 ft	CFS-4	Υ
	GZ-128	boring	2025	0 / 279.5	16 / 263.5	-/-	0 / 279.5	-/-	4.5 / 275	14 / 265.5	-/-	-/-	-/-	Topsoil Fill: 0 to 4.5 feet, Loose blow count(s): 5 to 9 ft in fill	CFS-4, PVT	Υ
	GZ-129	boring	2025	0 / 281	22 / 259	-/-	0 / 281	-/-	0.1 / 280.9	15.8 / 265.2	-/-	-/-	-/-	Loose blow count(s): 10 to 12 ft in fill/topsoil, buried topsoil: 10.5 to 15.8 ft	CFS-4, PVT	Y
	GZ-130	boring	2025	0 / 270	19 / 251	-/-	0 / 270	-/-	16.3 / 253.7	18 / 252	-/-	-/-	-/-	Topsoil Fill: 0 to 16.3 ft, Loose blow count(s): 5 to 7 ft in topsoil	CFS-4	Υ
	GZ-131	boring	2025	0 / 272	19 / 253	-/-	0 / 272	-/-	16.3 / 255.7	18.3 / 253.7	-/-	-/-	-/-	Topsoil Fill: 0 to 16.3 ft	CFS-4, PVT	Υ
	GZ-132	boring	2025	0 / 268.5	19 / 249.5	-/-	0 / 268.5	-/-	-/-	14.5 / 254	-/-	-/-	-/-	Topsoil Fill: 0 to 14.5 ft, Loose blow count(s): 5 to 7 ft in topsoil	CFS-4, PVT	Y
	TP-309	test pit	2025	0 / 276	14 / 262	-/-	0 / 276	-/-	-/-	12 / 264	-/-	-/-	-/-	Topsoil Fill: 0 to 12 ft	CFS-4, PVT	Υ
	TP-310	test pit	2025	0 / 273.5	14 / 259.5	-/-	0 / 273.5	-/-	-/-	-/-	-/-	-/-	-/-	Topsoil Fill: not penetrated at 14 ft	CFS-4	Y
	TP-311	test pit	2025	0 / 274	14 / 260	-/-	0 / 274	-/-	-/-	-/-	-/-	-/-	-/-	Topsoil Fill: not penetrated at 14 ft	CFS-4	Υ
	TP-312	test pit	2025	0 / 271.5	14 / 257.5	-/-	0 / 271.5	-/-	-/-	-/-	-/-	-/-	-/-	Topsoil Fill: not penetrated at 14 ft	CFS-4	Υ
_	TP-313	test pit	2025	0 / 278	14 / 264	-/-	0 / 278	-/-	-/-	-/-	-/-	-/-	-/-	Topsoil Fill: not penetrated at 14 ft	CFS-4, PVT	Υ
l ea	TP-314	test pit	2025	0 / 278	14 / 264	-/-	0 / 278	-/-	-/-	-/-	-/-	-/-	-/-	Topsoil Fill: not penetrated at 14 ft	CFS-4, PVT	Y
<u> </u>	TP-316	test pit	2025	0 / 275	6 / 269	-/-	0 / 275	-/-	-/-	5 / 270	-/-	-/-	-/-	Topsoil Fill: 0 to 5 ft	CFS-4, RW, PVT	Y
 	TP-318	test pit	2025	0 / 279	3 / 276	-/-	0 / 279	-/-	-/-	2 / 277	-/-	-/-	-/-	Topsoil Fill: 0 to 2 ft	CFS-4, PVT	N N
_	TP-319	test pit	2025	0 / 275	13 / 262	-/-	0 / 275	-/-	-/-	-/-	-/-	-/-	-/-	Topsoil Fill: not penetrated at 13 ft	CFS-4, PVT	Y
<u> </u>	TP-321	test pit	2025	0 / 266	13 / 253	-/-	0 / 266	-/-	-/-	-/-	-/-	-/-	-/-	Topsoil Fill: not penetrated at 13 ft	CFS-4, RW, PVT	, Y
<u> </u>	TP-323	test pit	2025	0 / 270.5	13 / 257.5	-/-	0 / 270.5	-/-	-/-	-/-	-/-	-/-	-/-	Topsoil Fill: not penetrated at 13 ft	CFS-4	Y
uth	GZ-124	boring	2025	0 / 268.5	22 / 246.5	-/-	0 / 268.5	-/-	-/-	0.2 / 268.3	-/-	-/-	-/-	V. loose/loose blow count(s): 0 to 4 ft in topsoil/top of natural soil (sand), See Note 8	Annex, RW	N
1 0	B-67	boring	2020	0 / 261.9	23.2 / 238.7	23.2 / 238.7	-/-	-/-	-/-	0 / 261.9	23 / 238.9	-/-	18.3 / 243.6	Loose blow count: 0 to 2 ft in natural sand, SS refusal at 23.2 ft	RW	N
S	B-68 (MW-4)	boring	2020	0 / 267.7	48.7 / 219	48.7 / 219	-/-	-/-	0 / 267.7	4.9 / 262.8	38.5 / 229.2	-/-	38.3 / 229.4	V. loose/Loose blow count(s): 0 to 4 ft in probable fill, SS refusals: 4.9, 46.4, 48.7 ft, MW installed	RW	N
	B-135	boring	2020	0 / 270	55 / 215	-/-	0 / 270	-/-	-/-	1/269	38.5 / 231.5	53.5 / 216.5	21.5 / 248.5	Loose blow count(s): 0 to 4 ft in topsoil/top of natural soil, See note 8, SS refusals at 45.1 and 50.4 ft, probable bedrock: 53.5 to 55 ft	RW, PVT	N
	B-136	boring	2021	0 / 250.4	32.4 / 218	32.4 / 218	0 / 250.4	-/-	-/-	0.7 / 249.7	13.5 / 236.9	-/-	-/-	See note 8, SS refusals: 27.7 and 32.4 ft	RW	N
	TP-320	test pit	2025	0 / 259	4 / 255	-/-	0 / 259	-/-	-/-	3 / 256	-/-	-/-	-/-	Topsoil Fill: 0 to 3 ft	RW	Υ
	TP-322	test pit	2025	0 / 253.5	10 / 243.5	-/-	0 / 253.5	-/-	-/-	8 / 245.5	-/-	-/-	-/-	Topsoil Fill: 0 to 8 ft	RW	Υ
	B-42	boring	2020	0 / 273.3	32 / 241.3	-/-	-/-	-/-	0 / 273.3	9 / 264.3	-/-	-/-	-/-	Very loose blow counts: 0 to 8 ft within UXO preclearing trench, See Note 8	PVT	N
	B-53 (OW)	boring	2020	0 / 275.5	46.5 / 229	46.5 / 229	-/-	-/-	0 / 275.5	5 / 270.5	33.5 / 242	43.5 / 232	37.7 / 237.8	See Note 8, SS refusal at 45 ft, roller bit and casing practical refusal at 46.5 ft	PVT	N
	B-72	boring	2020	0 / 270.1	37 / 233.1	-/-	-/-	0 / 270.1	-/-	2 / 268.1	-/-	-/-	-/-	Loose blow counts: 0 to 4 ft in subsoil and top of natural soil	PVT	N
	GZ-5 (OW)	boring	2024	0 / 281	64 / 217	-/-	-/-	-/-	0 / 281	2 / 279	47.5 / 233.5	-/-	41.7 / 239.3	Observation well installed	PVT	N
	GZ-9	boring	2024	0 / 264	21 / 243	-/-	-/-	-/-	0 / 264	0.7 / 263.3	-/-	-/-	-/-		PVT	N
	GZ-113	boring	2025	0 / 283.5	18 / 265.5	-/-	-/-	-/-	0 / 283.5	14 / 269.5	-/-	-/-	-/-	Vacuum excavated: 0 to 5 ft, loose blow counts: 5 to 9 ft in fill	PVT	N
	GZ-133	boring	2025	0 / 266	12 / 254	-/-	-/-	-/-	0 / 266	7 / 259	-/-	-/-	-/-	Loose blow count(s): 10 to 12 ft in fill	PVT	N
	TP-16	test pit	2020	0 / 283.4	12 / 271.4	-/-	0 / 283.4	-/-	-/-	0.3 / 283.1	-/-	-/-	-/-	-	PVT	N
	TP-120	test pit	2020	0 / 274.5	12 / 262.5	-/-	0 / 274.5	0.7 / 273.8	-/-	2.3 / 272.2	-/-	-/-	-/-		PVT	N
	TP-121	test pit	2020	0 / 272.5	11.8 / 260.7	-/-	-/-	-/-	0 / 272.5	3.3 / 269.2	-/-	-/-	-/-	Within apparent former building area	PVT	N

Notes:

- 1) Definitions/Acronyms: "-" = Not observed or noted, v. = very, ft = depth measurement in feet, ref. = refusal, SS = splitspoon sampler, gw = groundwater observation/monitoring well installed in borehole upon drilling completion, WX = completely or very severely weathered bedrock, El. = elevation, TRC = TRC Companies, Inc., H&A = Haley & Aldrich, Inc., RW = retaining wall, PVT = Pavement, SWB = Stormwater Basin.
- 2) The subsurface information above is based on GZA's review of the exploration logs. Refer to the exploration logs in the appendices of this report for more detail.
- 3) The ground surface EI. for all explorations performed by TRC and/or H&A in 2020 were obtained from logs prepared by TRC and/or H&A. TRC has indicated the ground surface elevation at each boring location was determined by survey. We understand depths are relative to existing ground surface level at the time the exploration was performed. Elevations are in feet and we understand are referenced to the North American Vertical Datum of 1988 (NAVD88). Refer to the 2024 and 2025 GZA exploration logs for details on how the ground surface elevation was obtained.
- 4) Refusals noted above, either of drilling advancement (casing or roller bit) or split-spoon sampler (typically less than 6-inches advancement under 50 blows of a 140-pound hammer at a free-fall of 30-inches), where bedrock was not cored generally appear to be due to bedrock or cobbles/boulders in the glacial till.
- 5) Subsoil stratum categorized as Loess or Aeolian Silt deposits on the H&A logs in the Appendices.
- 6) Natural Granular Soils Stratum categorized as Glaciofluvial or Glaciolacustrine deposits on the H&A logs and occasionally on the TRC logs in the Appendices.
- 7) Groundwater observation wells were installed in 2020 borings B-53, B-68, and B-73 and the groundwater readings indicated for these borings were at the stabilization times noted by TRC/H&A. **Bold and blue-colored** groundwater level readings indicate groundwater level readings indicate groundwater level readings indicated groundwater level readings indicated obsciracy for these borings were at the stabilization times noted by TRC/H&A. **Bold and blue-colored** groundwater level readings indicate groundwater level readings indicate groundwater level readings indicated obsciracy for these borings were at the stabilization times noted by TRC/H&A. **Bold and blue-colored** groundwater level readings indicate groundwater level readings indicated for these borings were at the stabilization times noted by TRC/H&A. **Bold and blue-colored** groundwater level readings indicate groundwater level readings indicate groundwater level readings indicate groundwater level readings indicate groundwater level readings indicated gro
- 8) Cobbles and occasional boulders were noted in the H&A and TRC boring logs generally within the natural gravelly granular and glacial till strata and occasionally within the existing fill stratum.
- 9) Differences in strata depths/elevations in this table for borings B-134 to B-136 compared to the TRC boring logs are based on GZA review of soil samples from those borings provided by TRC.

Environmental

ECOLOGICAL


WATER

CONSTRUCTION MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 T: 781.278.3700 F: 781.278.5701

www.gza.com

FIGURES

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 T: 781.278.3700 F: 781.278.5701 F: 781.278.5702

www.gza.com

APPENDIX A

LIMITATIONS

November 2025

USE OF MEMO

1. GZA GeoEnvironmental, Inc. (GZA) prepared this Memo on behalf of, and for the exclusive use of our Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Memo. Use of this Memo, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the contract documents, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

STANDARD OF CARE

- 2. GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in Proposal for Services and/or Memo, and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. If conditions other than those described in this Memo are found at the subject location(s), or the design has been altered in any way, GZA shall be so notified and afforded the opportunity to revise the Memo, as appropriate, to reflect the unanticipated changed conditions.
- 3. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made.
- 4. In conducting our work, GZA relied upon certain information made available by public agencies, Client and/or others. GZA did not attempt to independently verify the accuracy or completeness of that information. Inconsistencies in this information which we have noted, if any, are discussed in the Memo.

SUBSURFACE CONDITIONS

- 5. The generalized soil profile(s) provided in our Memo are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs. The nature and extent of variations between these explorations may not become evident until further exploration or construction. If variations or other latent conditions then become evident, it will be necessary to reevaluate the conclusions and recommendations of this Memo.
- 6. In preparing this Memo, GZA relied on certain information provided by the Client, state and local officials, and other parties referenced therein which were made available to GZA at the time of our evaluation. GZA did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this evaluation.
- 7. Water level readings have been made in test holes (as described in this Memo) and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this Memo. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The water table encountered in the course of the work may differ from that indicated in the Memo.
- 8. GZA's services did not include an assessment of the presence of oil or hazardous materials at the property. Consequently, we did not consider the potential impacts (if any) that contaminants in soil or groundwater may have on construction activities, or the use of structures on the property.

01.0174955.30 Page | 2 November 2025

9. Recommendations for foundation drainage, waterproofing, and moisture control address the conventional geotechnical engineering aspects of seepage control. These recommendations may not preclude an environment that allows the infestation of mold or other biological pollutants.

COMPLIANCE WITH CODES AND REGULATIONS

10. We used reasonable care in identifying and interpreting applicable codes and regulations. These codes and regulations are subject to various, and possibly contradictory, interpretations. Compliance with codes and regulations by other parties is beyond our control.

COST ESTIMATES

11. Unless otherwise stated, our cost estimates are only for comparative and general planning purposes. These estimates may involve approximate quantity evaluations. Note that these quantity estimates are not intended to be sufficiently accurate to develop construction bids, or to predict the actual cost of work addressed in this Memo. Further, since we have no control over either when the work will take place or the labor and material costs required to plan and execute the anticipated work, our cost estimates were made by relying on our experience, the experience of others, and other sources of readily available information. Actual costs may vary over time and could be significantly more, or less, than stated in the Memo.

SCREENING AND ANALYTICAL TESTING

- 12. We collected soil samples at the locations identified in the Memo. These samples were analyzed for the specific parameters identified in the Memo.
- 13. Our interpretation of field screening and laboratory data is presented in the Memo. Unless otherwise noted, we relied upon the laboratory's QA/QC program to validate these data.
- 14. Variations in the types and concentrations of contaminants observed at a given location or time may occur due to release mechanisms, disposal practices, changes in flow paths, and/or the influence of various physical, chemical, biological or radiological processes. Subsequently observed concentrations may be other than indicated in the Memo, where applicable.

ADDITIONAL SERVICES

15. GZA recommends that we be retained to provide services during any future: site observations, design, implementation activities, construction and/or property development/redevelopment. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 T: 781.278.3700 F: 781.278.5701 F: 781.278.5702 www.gza.com

APPENDIX B

RELEVANT PREVIOUS (2020 & 2024) AND RECENT (2025) SUBSURFACE EXPLORATION DATA

(TABLES, LOGS, GROUNDWATER MEASUREMENTS)

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 T: 781.278.3700 F: 781.278.5701 F: 781.278.5702

www.gza.com

APPENDIX B.1

2020 TRC TEST PIT LOGS

KEY TO SYMBOLS

COARSE FRAGMENTS (% of Vol.)
15-35% 35-65% > 65% |
9 gravelly very gravelly extr. gravelly channery very channery extr.channery cobbly very cobbly extr. cobbly flaggy very flaggy extr. flaggy stony very stony extr. stony

TEXTURE cos - coarse sand s - sand fs - fine sand vfs - very fine sand lcos - loamy coarse sand ls - loamy sand lfs - loamy fine sand lvfs - loamy very fine sand cosl - coarse sandy loam sl - sandy loam fsl - fine sandy loam vfsl - very fine sandy loam l - loam sil - silt loam si - silt scl - sandy clay loam cl - clay loam sicl - silty clay loam sc - sandy clay sic - silty clay

c - clay

STRUCTURE Grade Structureless - 0 Weak - 1 Moderate - 2 Strong - 3 Type pl - platy pr - prismatic cpr - columnar gr - granular abk - angular blocky sbk - subangular blocky m - massive s - single grain Size vf - very fine f - fine m - medium co - coarse vc - very coarse vt - very thin t - thin th - thick vth - very thick

REDOX FEATURES Abundance f - Few c - Common 2-20% m - Many >20% Contrast f - Faint d - Distinct p - Prominent BOUNDARY Distinctness
Abrupt <1" (thick) Gradual 2.5 -5' Clear 1-2.5" Diffuse >5 Topography Smooth - boundary is nearly level Wavy - pockets with width greater than Irregular - pockets with depth greater than width Broken discontinuous

Table 2.3.3. 1982 Rawls Rates¹⁸

Texture Class	NRCS Hydrologic Soil Group	Infiltration Rate
	(HSG)	Inches/Hour
Sand	A	8.27
Loamy Sand	A	2.41
Sandy Loam	В	1.02
Loam	В	0.52
Silt Loam	С	0.27
Sandy Clay Loam	С	0.17
Clay Loam	D	0.09
Silty Clay Loam	D	0.06
Sandy Clay	D	0.05
Silty Clay	D	0.04
Clay	D	0.02

Massachusetts Stormwater Handbook, Volume 3, page 22, Table 2.3.3. 1982 Rawls Rate.

Test Pit #: TP-14

Date: 08/12/20

Project: CFS, Devens, MA Project #: 349440.0004

Depth to Massive Rock: Not Encountered Ground Surface Elevation: 270.3 ft

Horizon	Depth (in)	Color	Texture	Structure	Consistence	Redox/ Mottling Features	Boundary	Hydrologic Group*	Estimated Infiltration Rate (in/hr)*
A	0.0-5.0	10YR 4/3	sl	1 m gr	fr	-	Abrupt Wavy	В	1.02
Bw ₁	5.0-27.0	10YR 6/4	Very gravelly s	0 m	loose	-	Abrupt Smooth	A	8.27
Bw_2	27.0-50.0	10YR 5/3	Extr. Gravelly s	0 m	loose	-	Abrupt Smooth	A	8.27
Bw ₃	50.0-96.0	10YR 6/1	S	0 m	loose	-	Abrupt Smooth	A	8.27
Bw ₄	96.0-144.0	10YR 6/2	extr. Gravelly cos	0 m	loose	-	-	A	8.27

TRC Engineers, Inc. Representative: Charles Zielke

Notes:

No groundwater was encountered on the day of investigation.

Test Pit #: TP-16

Date: 08/14/20

Project: CFS, Devens, MA Project #: 349440.0004

Depth to Massive Rock: Not Encountered Ground Surface Elevation: 283.4 ft

Horizon	Depth (in)	Color	Texture	Structure	Consistence	Redox/ Mottling Features	Boundary	Hydrologic Group*	Estimated Infiltration Rate (in.hr)*
A	0.0-3.0	10YR 5/1	sl	1 m gr	vfr	-	Abrupt Wavy	В	1.02
Bw_1	3.0-26.0	10YR 5/2	cobbly sl	0 m	loose	ı	Gradual Wavy	В	1.02
Bw_2	26.0-110.4	10YR 5/4	Extr. cobbly cos	0 m	loose	-	Abrupt Smooth	A	8.27
\mathbf{Bw}_3	110.4-144.0	10YR 5/1	sl	0 m	loose	-	-	В	1.02

TRC Engineers, Inc. Representative: Charles Zielke

Notes:

No groundwater was encountered on the day of investigation.

Test Pit #: TP-18

Date: 08/13/20

Project: CFS, Devens, MA Project #: 349440.0004

Depth to Massive Rock: Not Encountered Ground Surface Elevation: 282.1 ft

Horizon	Depth (in)	Color	Texture	Structure	Consistence	Redox/ Mottling Features	Boundary	Hydrologic Group*	Estimated Infiltration Rate (in/hr)*
A	0.0-6.0	10YR 4/3	sl	1 m gr	vfr	-	Abrupt Smooth	В	1.02
Bw_1	6.0-21.0	10YR 6/6	fs	0 m	loose	-	Gradual Smooth	A	8.27
Bw_2	21.0-72.0	10YR 7/4	fs	0 m	loose	-	Gradual Smooth	A	8.27
Bw ₃	72.0-120.0	10YR 7/4	Extr. Gravelly fs	0 m	loose	-	Gradual Smooth	A	8.27
Bw_4	120.0-144.0	10YR 7/4	fs	0 m	loose	-	-	A	8.27

TRC Engineers, Inc. Representative: Charles Zielke

Notes:

No groundwater was encountered on the day of investigation.

Test Pit #: TP-120

Date: 09/04/20

Project: CFS, Devens, MA Project #: 349440.0004

Depth to Massive Rock: Not Encountered Ground Surface Elevation: 274.5 ft

Horizon	Depth (in)	Color	Texture	Structure	Consistence	Redox/ Mottling Features	Boundary	Hydrologic Group*	Estimated Infiltration Rate (in/hr)*
A	0.0-8.0	10YR 4/2	1	1 m gr	vfr	-	Gradual Wavy	В	0.52
Bw_1	8.0-28.0	10YR 6/4	Gravelly sil	1 m sbk	fr	-	Gradual Wavy	С	0.27
Bw ₂	28.0-144.0	10YR 5/4	Extr. Cobbly cos	0 m	loose	-	-	A	8.27

TRC Engineers, Inc. Representative: Charles Zielke

Notes:

No groundwater was encountered on the day of investigation.

Test Pit #: TP-121

Date: 09/04/20

Project: CFS, Devens, MA Project #: 349440.0004

Depth to Massive Rock: Not Encountered Ground Surface Elevation: 272.5 ft

Horizon	Depth (in)	Color	Texture	Structure	Consistence	Redox/ Mottling Features	Boundary	Hydrologic Group*	Estimated Infiltration Rate (in/hr)*
FILL ₁	0.0-38.0	10YR 6/1	Cobbly sil	1 m sbk	fi	-	Abrupt Smooth	С	0.27
FILL ₂	38.0-40.0	10YR 4/1	Gravel	0 m	loose	-	Abrupt Smooth	-	-
Bb	40.0-136.0	10YR 6/4	fs	0 m	loose	-	Abrupt Smooth	A	8.27
Bw	136.0-141.6	10YR 7/2	Cobbly s	0 m	loose	-	-	A	8.27

TRC Engineers, Inc. Representative: Charles Zielke

Notes:

No groundwater was encountered on the day of investigation.

FILL₂ – contained gravel and concrete

Excavation terminated at 141.6 in. due to pit's sidewalls caving.

^{*}Based on Massachusetts Stormwater Handbook, Volume 3, page 22, Table 2.3.3. 1982 Rawls Rate. See Key to Symbols.

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 T: 781.278.3700 F: 781.278.5701 F: 781.278.5702 www.gza.com

APPENDIX B.2

2020 TRC TEST BORING LOGS

KEY TO SYMBOLS

Symbol Description Symbol Description Strata symbols Misc. Symbols ∇ Water table first encountered Bedrock Poorly-graded Gravel \blacksquare Water table first reading after drilling \mathbf{V} Water table second reading after drilling \mathbf{V} Water table third reading after drilling Poorly-graded Gravel with NR Not Recorded Boulders / Cobbles Clay МН Moh's Hardness Sample Type Highly Weathered or Poorly-graded Gravel with Decomposed Rock Rock Core Poorly-graded Sandy Split Barrel Fill (made ground) Well-graded Gravel with Silty, Clayey Gravel Lab Symbols Silty Gravel Silt with Low Plasticity FINES = Fines % LL = Liquid Limit %

Notes:

COLUMN A) Soil sample number.

Gneiss

COLUMN B) FOR SOIL SAMPLE (ASTM D 1586): indicates number of blows obtained for each 6 ins. penetration of the standard split-barrel sampler. FOR ROCK CORING (ASTM D2113): indicates percent recovery (REC) per run and rock quality designation (RQD). RQD is the % of rock pieces that are 4 ins. or greater in length in a core run.

USCS Sandy Silt

PI = Plasticity Index %

W/V = Unit Weight

U_c = Unconfined Compressive Strength

COLUMN C) Strata symbol as assigned by the geotechnical engineer.

DESCRIPTION) Description including color, texture and classification of subsurface material as applicable (see Descriptive Terms). Estimated depths to bottom of strata as interpolated from the borings are also shown.

DESCRIPTIVE TERMS: F = fine M = medium C = coarse

RELATIVE PROPORTIONS:

-Descriptive Term- Trace	-Symbol- TR	-Est. Percentages- 1-10
Trace to Some	TR to SM	10-15
Some	SM	15-30
Silty, Sandy,		
Clayey, Gravelly	-	30-40
And	and	40-50

REMARKS) Special conditions or test data as noted during investigation. Note that W.O.P. indicates water observation pipes.

^{*} Free water level as noted may not be indicative of daily, seasonal, tidal, flood, and/or long term fluctuations.

PROJECT: CFS

LOCATION: DEVENS, MA

BORING

B-42 G.S. ELEV. 273.3

1 OF 1

FILE 349440.0004 SHEET

DRILLER		G. PEEL	
HELPER	D. (CARPENTER	
INSPECTOR		S. PRATT	
DATE START	ED	08/24/2020	
DATE COMP	LETED	08/24/2020	

	GROUNDWATER DATA							
FIRST I	FIRST ENCOUNTERED N/A							
DEPTH	HOUR	DATE	ELAPSED TIME					

M	ETHOD O	F ADVANO	CING BO	REHOLE	
а	FROM	0.0 '	TO	10.0 '	
h	FROM	10.0 '	TO	32.0 '	

PP DEPTH Α В С **DESCRIPTION** REMARKS S-1 WOH/2.0' S-2 WOH/2.0' LIGHT BROWN F/M/C SAND, SM GRAVEL, TR CLAY, TR SILT, DRY S-3 WOH/2.0' S-4 WOH/1.5' 8.0 265.3 WATER INTRODUCED AT 10.0 FT 10 S-5 8 9 20 18 10.0-15.0 FT - SOME **COBBLES** LIGHT BROWN SILTY F/M SAND WITH F/C GRAVEL, DRY 15.0 258.3 15 S-6 8 10 15 15 17.0 FT - BORING LIGHT BROWN F/ SANDY SILT COLLAPSED 20 20.0 253.3 NEW PROJECTS TEST BORING LOG 349440.0004 CFS.GPJ SITE BLAUVELT.GDT 4/2/21 S-7 16 14 19 25 25 BROWN F/M/C SAND, SM F/ GRAVEL, SM SILT S-8 26 15 13 16 30 242.3 BROWN SILTY SAND, TRACE TO LITTLE F/ S-9 10 10 6 8 32.0 GRAVEL, GLACIAL TILL 241.3 **END OF BORING AT 32'** DRN. TBT JPB CKD.

GROUNDWATER DATA

DATE

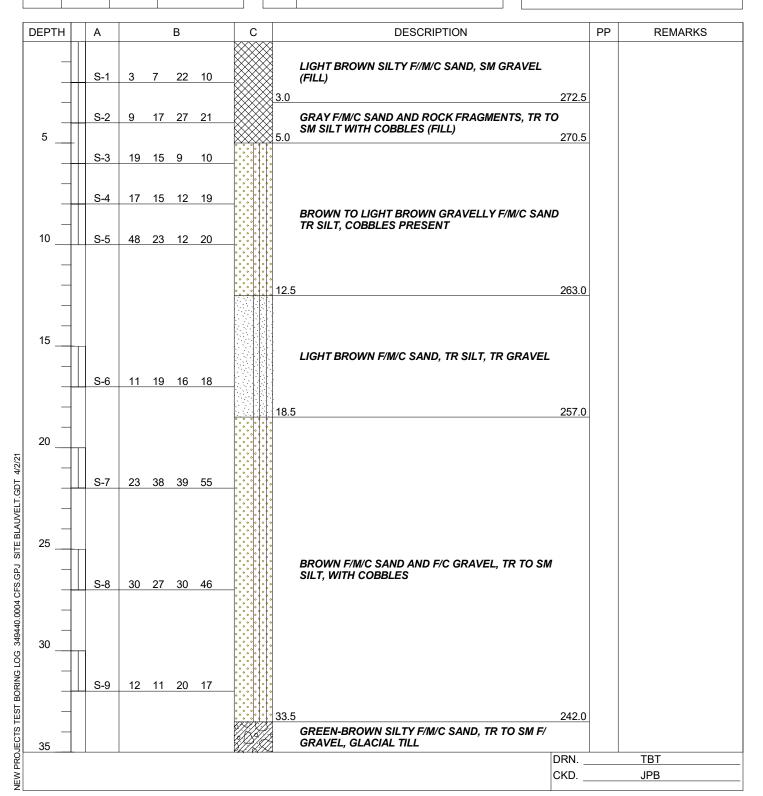
ELAPSED TIME

PROJECT: CFS

DEPTH HOUR

LOCATION: DEVENS, MA

FIRST ENCOUNTERED N/A


TRC TEST BORING LOG

BORING B-53 G.S. ELEV. 275.5

FILE 349440.0004 SHEET 1 OF 2

METHOD OF ADVANCING BOREHOLE							
а	FROM	0.0 '	TO	10.0 '			
h	FROM	10.0 '	TO	46.5 '			

DRILLER	A. PETERS
HELPER	C. CHERRY
INSPECTOR	S. PRATT
DATE STARTED	10/23/2020
DATE COMPLETE	D 10/29/2020

PROJECT: CFS

LOCATION: DEVENS, MA

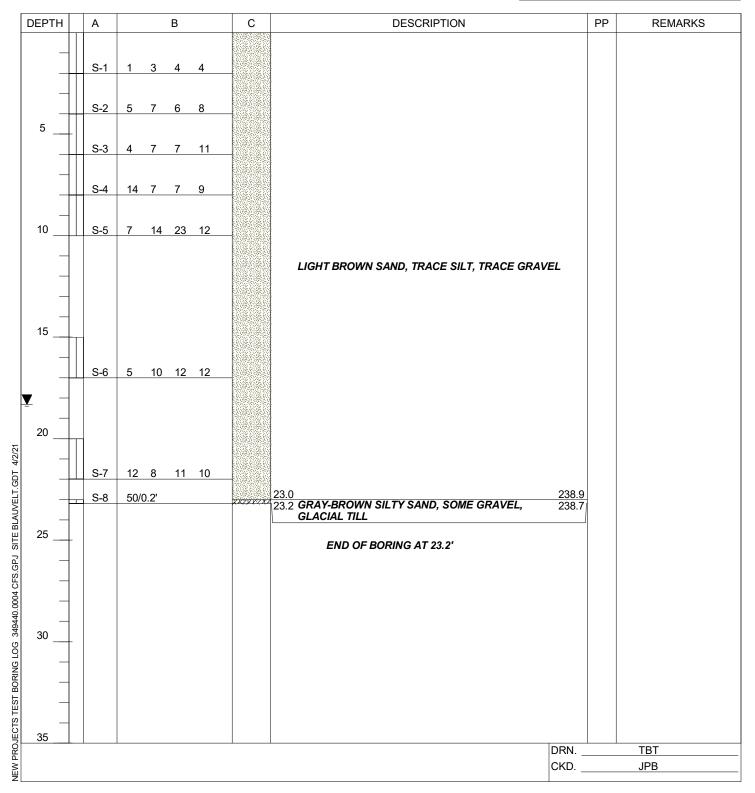
BORING B-53 G.S. ELEV. 275.5

FILE 349440.0004

SHEET 2 OF 2

DEPTH		Α			В		С			DESCRIPTION		PP	REMARKS
_		S-10	12	12	15	21							
40										GREEN-BROWN SILTY F/M/C SAND, TR TO SM F/ GRAVEL, GLACIAL TILL			
_		S-11	17	18	40	32							43.0-44.0 FT: BOULDER
45		S-12	80/0	'					44.5	PROBABLE BEDROCK	231.0		44.0-44.5: SANDY
_								×.	46.5		229.0		
_										END OF BORING AT 46.5'			
50													
-													
_													
_													
60	-												
_													
_													
65	-												
-													
70													
75													

PROJECT: CFS


LOCATION: DEVENS, MA

BORING B-67 G.S. ELEV. 261.9

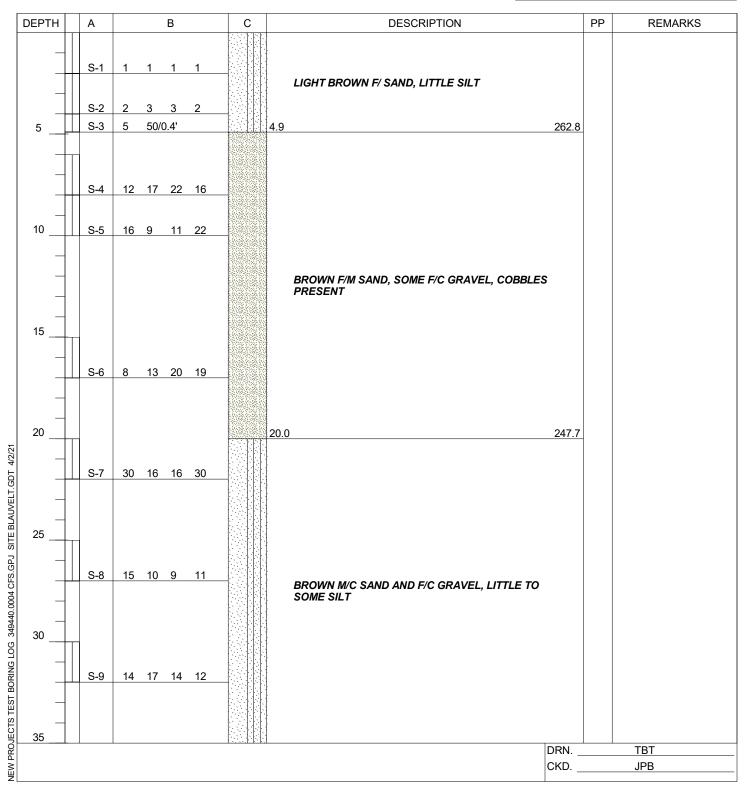
FILE 349440.0004

	GROU	GROUNDWATER DATA			M	ETHOD C	F ADVANO	CING BO	REHOLE
FIRST ENCOUNTERED N/A					а	FROM	0.0 '	TO	10.0 '
DEPTH	HOUR			_	h	FROM	10.0 '	TO	23.2 '
18.3'	NR	8/25	0 HR	▼					

DRILLER	A. PETERS
HELPER	C. CHERRY
INSPECTOR	S. PRATT
DATE STARTED	08/25/2020
DATE COMPLETE	D 08/25/2020

PROJECT: CFS

LOCATION: DEVENS, MA

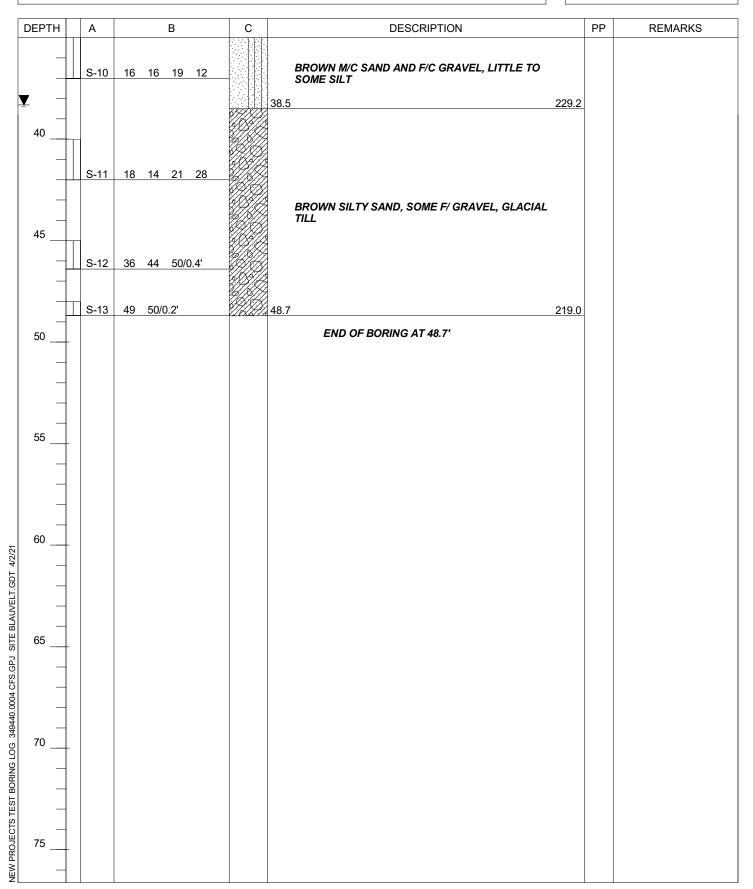

BORING B-68 G.S. ELEV. 267.7

FILE 349440.0004

				_		
	GROU		M	ETHOD		
FIRST I	ENCOUNT	∇	а	FROM		
DEPTH	HOUR	DATE	_	h	FROM	
38.3'	NR	11/11	NR	▼		
				_		

	METHOD OF ADVANCING BOREHOLE								
∇	а	FROM	0.0 '	TO	10.0 '				
_	h	FROM	10.0 '	TO	48.7 '				
▼									
_									

DRILLER A	A. PETERS
HELPERC	:. CHERRY
INSPECTOR	S. PRATT
DATE STARTED	08/26/2020
DATE COMPLETED	08/26/2020



PROJECT: CFS

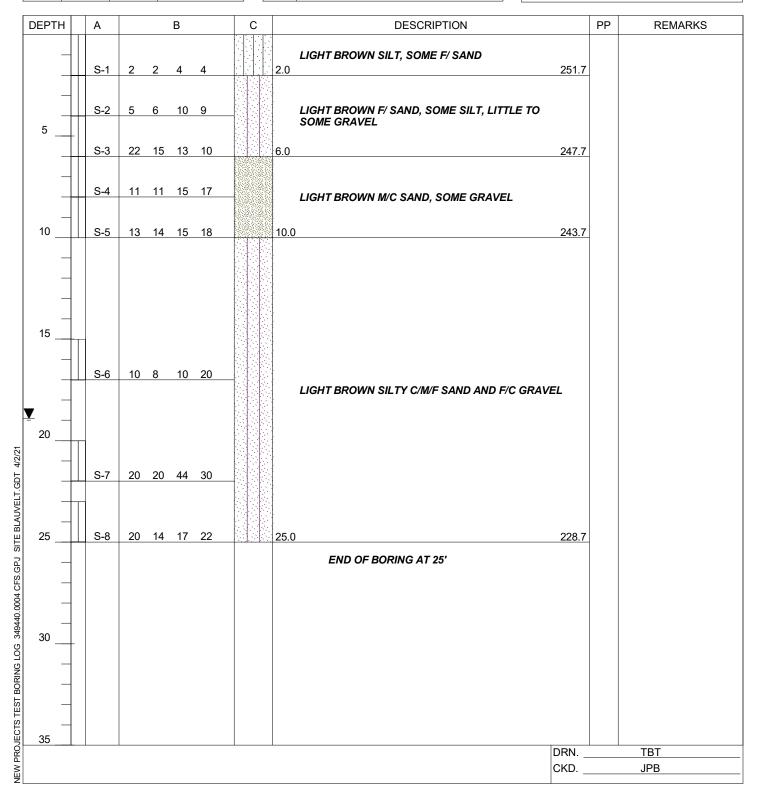
LOCATION: DEVENS, MA

BORING B-68 G.S. ELEV. 267.7

FILE 349440.0004 SHEET 2 OF 2

PROJECT: CFS

LOCATION: DEVENS, MA


BORING **B-69** G.S. ELEV. 253.7

FILE 349440.0004 SHEET 1 OF 1

	GROUNDWATER DATA							
FIRST I	FIRST ENCOUNTERED N/A							
DEPTH	HOUR	DATE	ELAPSED TIME					
18.9'	NR	8/26	0 HR	1				
				1				
				1				

	М	METHOD OF ADVANCING BOREHOLE								
∇	а	FROM	0.0 '	TO	10.0 '					
_	h	FROM	10.0 '	TO	25.0 '					
▼										
_										

DRILLER _	Α	. PETERS	
HELPER _	C.	. CHERRY	
INSPECTO	R	S. PRATT	
DATE STAF	RTED	08/26/2020	
DATE COM	PLETED	08/26/2020	

PROJECT: CFS

LOCATION: DEVENS, MA

BORING B-70 G.S. ELEV. 260.8

FILE 349440.0004

_									
GROUNDWATER DATA									
]	I/A	ERED N	ENCOUNT	FIRST E					
	ELAPSED TIME	DATE	HOUR	DEPTH					
1	0 HR	8/26	NR	19.8'					
]									
1									

	М	METHOD OF ADVANCING BOREHOLE								
∇	а	FROM	0.0 '	TO	10.0 '					
_	h	FROM	10.0 '	TO	25.0 '					
▼										
_										

DRILLER	A. PETERS
HELPER	C. CHERRY
INSPECTOR	S. PRATT
DATE STARTED	08/25/2020
DATE COMPLETED	08/26/2020

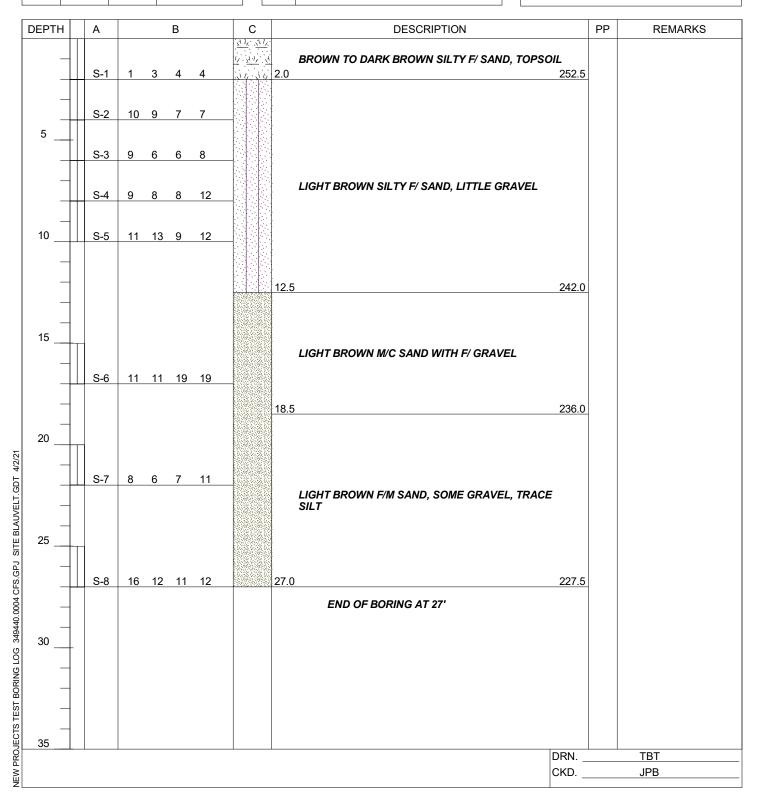
DEPTH	Н	Α			В			С		DESCRIPTION	PP	REMARKS
		S-1	2	2	3	4				LIGHT PROMANCH TV F/M CAND, TRACE CRAVEL		
	4	S-2	5	5	5	5				LIGHT BROWN SILTY F/M SAND, TRACE GRAVEL		
5 _	_	S-3	5	6	8	12			6.0	254.8	3	
	-	S-4	12	10	8	8						
10 _		S-5	5	6	8	9						
	-									LIGHT PROMINANO SAND TRACE ORANGI		
45	7									LIGHT BROWN M/C SAND, TRACE GRAVEL		
15 _												
		S-6	10	12	11	15	_					
Z 20	-								20.0	240.8		
									20.0	LIGHT BROWN M/C SAND AND GRAVEL		
		S-7	12	15	10	15		7	23.0		3	
25	_	S-8	9	10	12	9			25.0	BROWN SILTY F/M SAND, SOME GRAVEL 235.8	3	
_										END OF BORING AT 25'		
30 _												
35												
	_		· ·		_	_	_		_	DRN.	_	TBT

GROUNDWATER DATA FIRST ENCOUNTERED N/A
DEPTH HOUR DATE ELAPSED TIME

PROJECT: CFS

DEPTH HOUR

LOCATION: DEVENS, MA


TRC TEST BORING LOG

BORING B-71 G.S. ELEV. 254.5

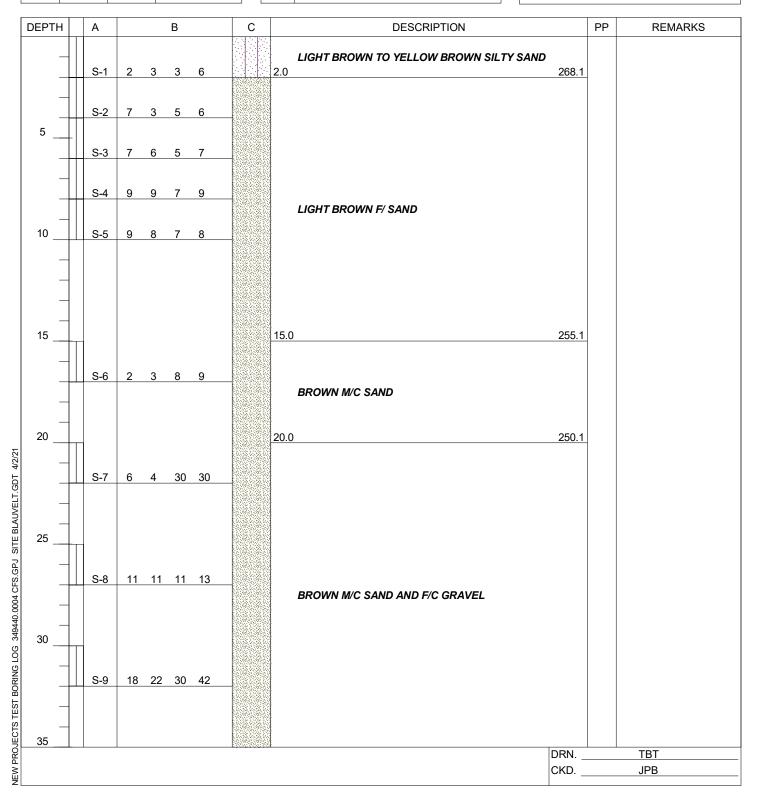
FILE 349440.0004

M	METHOD OF ADVANCING BOREHOLE									
а	FROM	0.0 '	TO	10.0 '						
h	FROM	10.0 '	27.0 '							

DRILLER	A. PETERS
HELPER C	CHERRY
INSPECTOR	S. PRATT
DATE STARTED	09/22/2020
DATE COMPLETED	09/22/2020

PROJECT: CFS

LOCATION: DEVENS, MA


BORING **B-72** G.S. ELEV. 270.1

> FILE 349440.0004

	GROUNDWATER DATA										
FIRST I	FIRST ENCOUNTERED N/A										
DEPTH	DEPTH HOUR DATE ELAPSED TIME										

M	METHOD OF ADVANCING BOREHOLE									
а	FROM	0.0 '	TO	10.0 '						
h	FROM	10.0 '	TO	37.0 '						

DRILLER _	Α	N. PETERS	
HELPER	C.	. CHERRY	
INSPECTOR	₹	S. PRATT	
DATE STAR	TED	08/28/2020	
DATE COM	PLETED	08/28/2020	
	_		

PROJECT: CFS

LOCATION: DEVENS, MA

BORING B-72 G.S. ELEV. 270.1

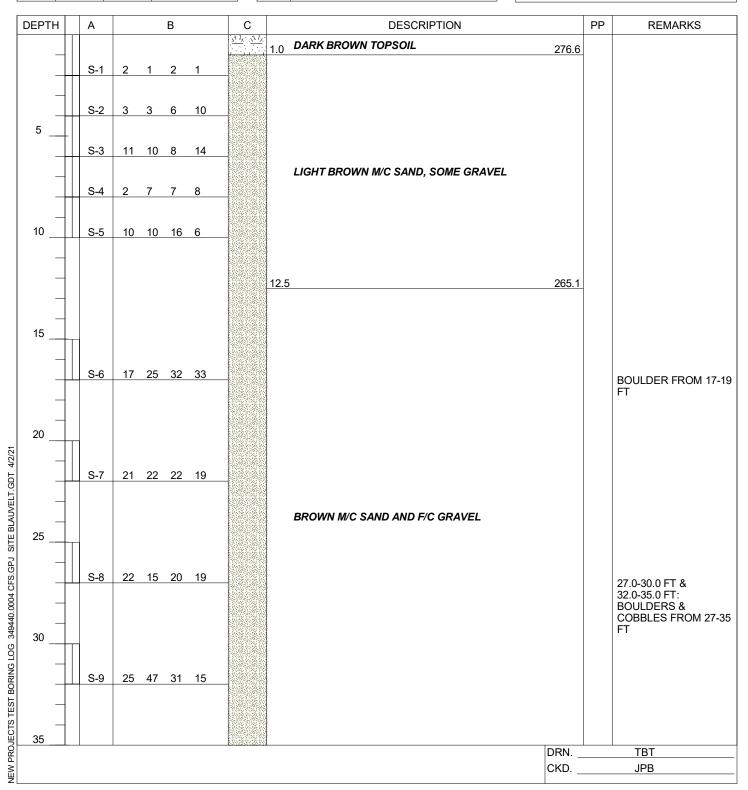
FILE 349440.0004

SHEET 2 OF 2

## S-10 32 41 38 38 37.0 233.1 ## END OF BORING AT 37' ## END OF	DEPT	Н	Α			В		С	DESCRIPTION	PP	REMARKS
END OF BORING AT 37' 45 50 60									BROWN M/C SAND AND F/C GRAVEL		
40		+	S-1	0 32	2 41	38	38				
45		-							END OF BORING AT 37'		
50	40 _										
50		4									
50		-									
50		-									
55	45 _	1									
55		4									
55		-									
55											
	50 _	\dashv									
		+									
60	55 _	_									
60		-									
60											
65		-									
65	60 -	+									
65	GDT 4										
65	UVELT	\perp									
70	85 EBLA	+									
	ଆଧାର ଆଧାର	\exists									
70	4 CFS.(4									
70	40.000	+									
75	76 8 0 70										
75	NG LO	1									
75	T BORI	+									
	IS TES	+									
	75 _										
	EW PF	\perp									

PROJECT: CFS

LOCATION: DEVENS, MA


BORING **B-73** G.S. ELEV. 277.6

FILE 349440.0004

	GROUNDWATER DATA							
∇	FIRST ENCOUNTERED N/A							
_	ELAPSED TIME	DEPTH HOUR DATE ELAPSED TIME						
lacksquare	NR	11/11	47.0' NR					

	М	METHOD OF ADVANCING BOREHOLE							
∇	а	FROM	0.0 '	TO	10.0'				
_	h	FROM	10.0 '	TO	53.6 '				
▼									
_									

DRILLER	A. PETERS
HELPERC	CHERRY
INSPECTOR	S. PRATT
DATE STARTED	09/21/2020
DATE COMPLETED	09/21/2020

PROJECT: CFS

LOCATION: DEVENS, MA

BORING B-73 G.S. ELEV. 277.6

FILE 349440.0004 SHEET 2 OF 2

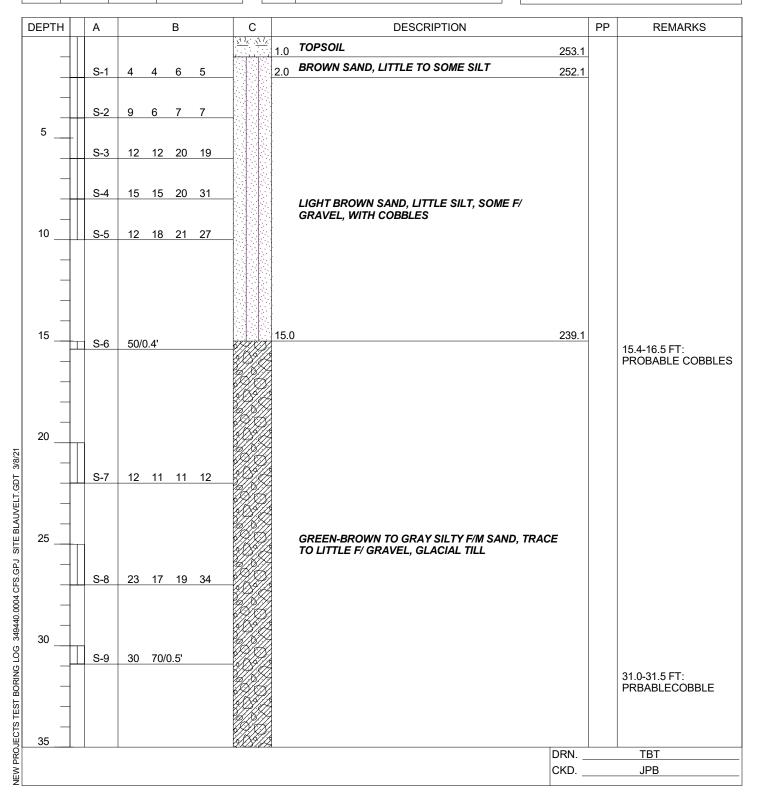
DEPTH		Α			В		С		DESCRIPTION		PP	REMARKS
_		S-10	35	39	24	19						
40		S-11	8	12	50	50/0.3			BROWN M/C SAND AND F/C GRAVEL			COBBLE FROM 41-41.8 FT
45		S-12	27	27	25	16						
50								48.	5	229.1		
		S-13	11	6	15	30		53.6	GREEN-BROWN SILTY F/M SAND, TRACE ROCK FRAGMENTS/GRAVEL	224.0		
55	-								END OF BORING AT 53.6'			
60	_											
65 70 75	_											
_ _ _												
70 <u> </u>	-											
75 <u> </u>	-											

PROJECT: CFS

LOCATION: DEVENS, MA

BORING

G.S. ELEV. 254.1


FILE 349440.0004

B-134

		М	ETH				
FIRST I	FIRST ENCOUNTERED N/A						
DEPTH	HOUR		h	FR			

N	METHOD OF ADVANCING BOREHOLE						
а	FROM	0.0 '	TO	10.0 '			
h	FROM	10.0 '	TO	37.0 '			

DRILLER	P	A. PETERS	
HELPER	С	. CHERRY	
INSPECTOR		S. PRAT	Γ
DATE START	ED	11/18/2020	<u> </u>
DATE COMPL	ETED	11/18/2	020

PROJECT: CFS

LOCATION: DEVENS, MA

BORING B-134 G.S. ELEV. 254.1

FILE 349440.0004

SHEET 2 OF 2

DEPTH	Α		ı	В	С	DESCRIPTION	PP	REMARKS
						GREEN-BROWN TO GRAY SILTY F/M SAND, TRACE TO LITTLE F/ GRAVEL, GLACIAL TILL		
	S-10	25	40	40 33	3 9/2//	37.0 217.1		
4						END OF BORING AT 37'		
40								
+								
+								
45								
4								
50								
\dashv								
\dashv								
7								
55								
60								
4								
\dashv								
\dashv								
65								
33 								
70								
4								
_								
_								
75								
75								
\dashv								

GROUNDWATER DATA

11/17

ELAPSED TIME

0HR

TRC TEST BORING LOG

PROJECT: CFS

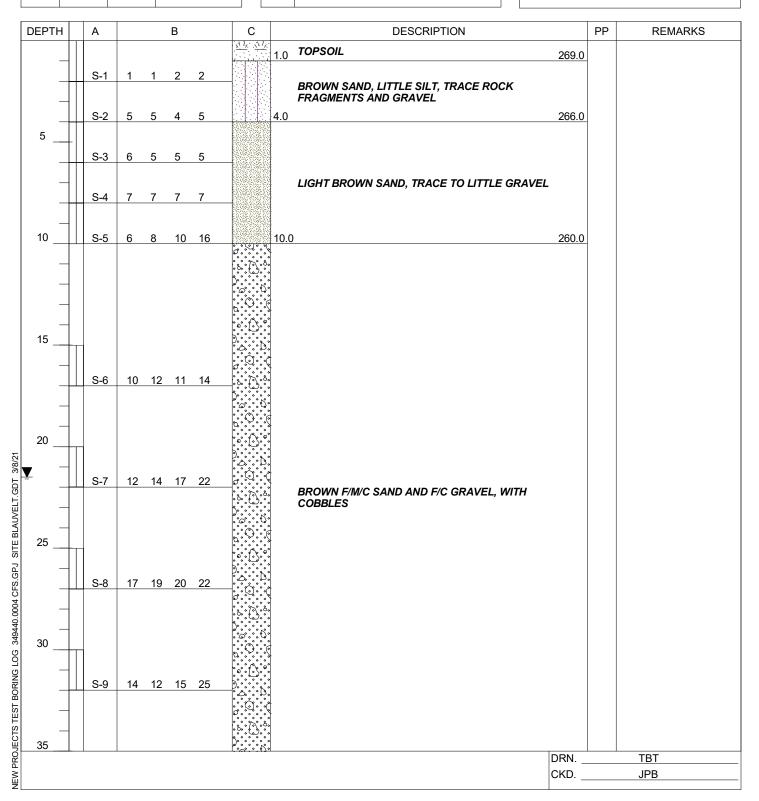
21.5'

LOCATION: DEVENS, MA

FIRST ENCOUNTERED N/A
DEPTH HOUR DATE E

NR

BORING G.S. ELEV.

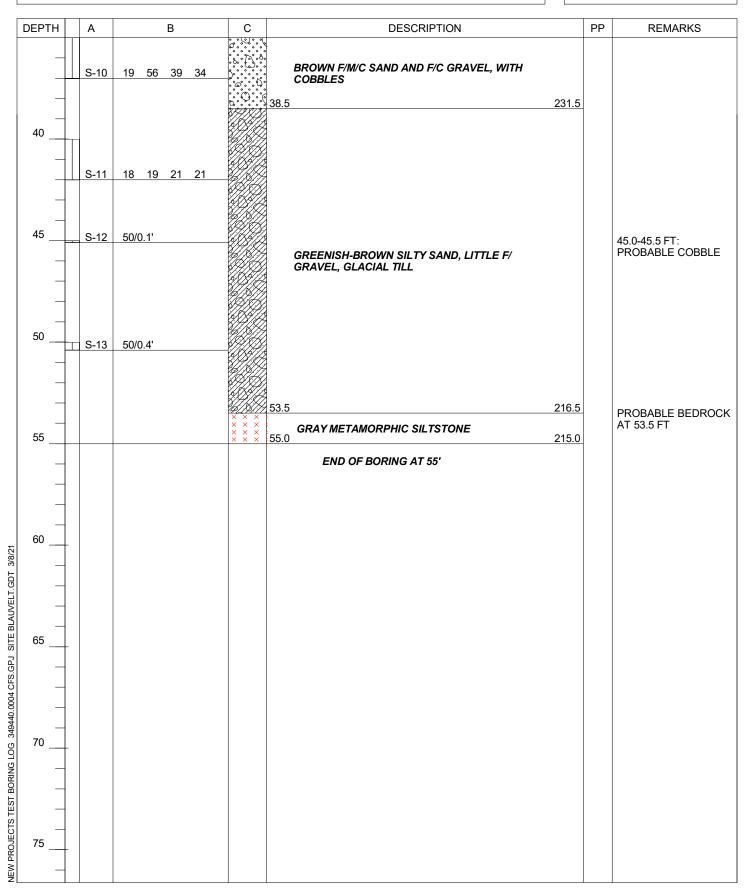

B-135 270.0

FILE

349440.0004

	METHOD OF ADVANCING BOREHOLE							
∇	а	FROM	0.0 '	TO	10.0 '			
_	h	FROM	10.0 '	TO	55.0 '			
▼								
-								
1 1								

DRILLER	A. PETERS
HELPERC	CHERRY
INSPECTOR	S. PRATT
DATE STARTED	11/17/2020
DATE COMPLETED	11/17/2020


PROJECT: CFS

LOCATION: DEVENS, MA

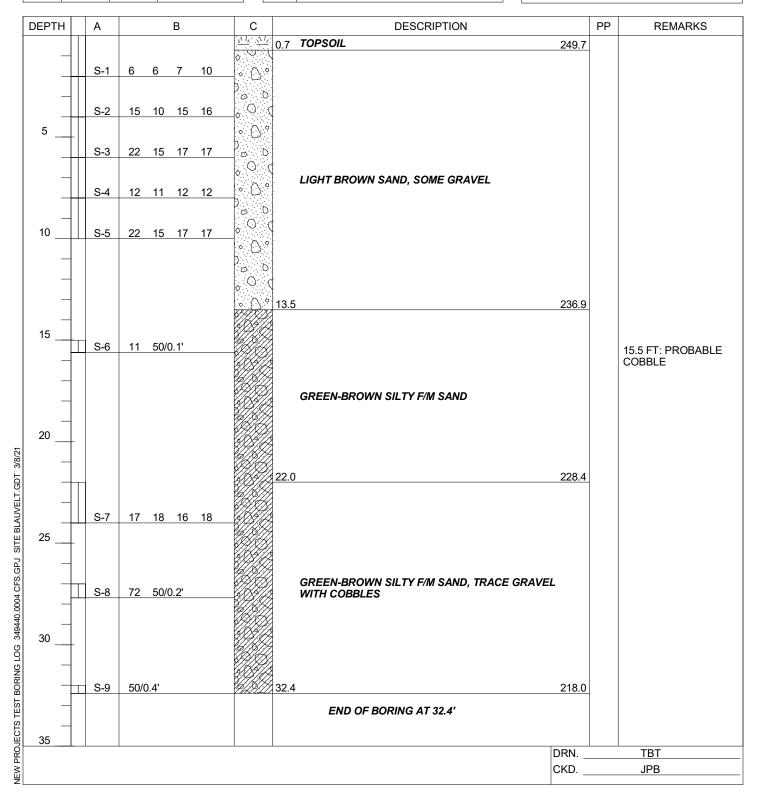
BORING B-135 G.S. ELEV. 270.0

FILE 349440.0004

SHEET 2 OF 2

PROJECT: CFS

LOCATION: DEVENS, MA


BORING B-136 G.S. ELEV. 250.4

> FILE 349440.0004

GROUNDWATER DATA								
FIRST I	FIRST ENCOUNTERED N/A							
DEPTH	EPTH HOUR DATE ELAPSED TIME							

M	METHOD OF ADVANCING BOREHOLE						
а	FROM	0.0 '	TO	10.0 '			
h	FROM	10.0 '	TO	32.4 '			

DRILLER	P	A. PETERS	
HELPER	С	: CHERRY	
INSPECTOR		S. PRATT	
DATE STARTI	ED	11/17/2020	
DATE COMPL	ETED	11/17/2020	

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 T: 781.278.3700 F: 781.278.5701 F: 781.278.5702 www.gza.com

APPENDIX B.3

2020 TRC OBSERVATION WELL GROUNDWATER LEVEL DATA

Monitoring Well Gauging Data Commonwealth Fusion Systems (CFS) 111 Hospital Road, Devens, MA

	Depth t	to Water (ft b	tor)
Well ID ¹	9/15 & 9/25/20 ²	10/8/2020	11/11/2020 ³
MW-1	40.40	41.90	42.00
MW-2	26.40	26.61	26.70
MW-3	41.45	40.40	NM
MW-4	39.80	39.35	39.85
MW-5	47.85	48.25	49.26
MW-6	37.35	38.56	39.57
MW-7	35.99	36.51	37.55
B-45	NM	40.96	NM
B-119	NM	46.57	NM

Ft btor – feet below top of [PVC] riser

¹ B-45 and B-119 are piezometers

² Wells MW-3, 4, 6, and 7 measured on 9/15/20 and wells MW-1 and 2 measured on 9/25/20

³ Water levels collected prior to well abandonment

Michael Ostrowski

From: Kazaniwsky, Petro W. <PKazaniwsky@trccompanies.com>

Sent: Monday, October 12, 2020 7:22 AM

To: Michael Ostrowski

Cc: Labbe, William; Martin Rodick; Brian Kennedy; Jason Bruetsch; Douglas Hartnett

(dhartnett@highpointeng.com); Brent Goldstein; Mike Toomey; treynoso; Anne

Columbia; Brett Horton

Subject: RE: [EXTERNAL] Re: Water levels in monitoring wells - CFS Devens

Categories: Green Category, Red Category

Michael, more well stickups: MW-2 had 2.40 ft. of stickup MW-5 had 2.26 ft. of stickup MW-7 had 1.75 ft. of stickup

Petro W. Kazaniwsky, P.E. Chief Geotechnical Engineer

16000 Commerce Parkway, Suite B, Mount Laurel, NJ 08054 Direct Dial: 856-780-8529 | F: 856-273-9244 | C: 609-314-6662

Follow us on LinkedIn | Twitter | Blog | Flickr | TRCcompanies.com

Please note that our domain name and email addresses have changed

The content of this e-mail is intended solely for the use of the Individual or entity to whom it is addressed. If you have received this communication in error, be aware that forwarding it, copying it, or in any way disclosing its content to any other person, is strictly prohibited. If you have received this communication in error, please notify the author by replying to this e-mail immediately.

From: Kazaniwsky, Petro W.

Sent: Thursday, October 8, 2020 10:10 AM

To: Michael Ostrowski < Michael. Ostrowski@gza.com>

Cc: Labbe, William <wlabbe@trccompanies.com>; Martin Rodick <Martin.Rodick@gza.com>; Brian Kennedy

<bkennedy@bwkennedyco.com>; Jason Bruetsch <jbruetsch@bwkennedyco.com>; Douglas Hartnett

(dhartnett@highpointeng.com) < dhartnett@highpointeng.com>; Brent Goldstein < brg@gm-se.com>; Mike Toomey

<toomey@bostonenvcorp.com>; treynoso <treynoso@ks-prop.com>; Anne Columbia

<acolumbia@columbiagrouprealty.com>; Brett Horton <bhorton@cfs.energy>

Subject: Re: [EXTERNAL] Re: Water levels in monitoring wells - CFS Devens

I have some stick ups of pipe risers but field staff will need to confirm for those that I don't have

Mw1 3ft

Mw3 2 ft

Mw4 1ft 9 in.

Mw6 2ft 6in

Sent from my iPhone P Kazaniwsky

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

CONSTRUCTION MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 T: 781.278.3700 F: 781.278.5701 F: 781.278.5702 www.gza.com

APPENDIX B.4

2020 H&A SUBSURFACE SUMMARY TABLES AND TEST BORING LOGS

TABLE I SUMMARY OF SUBSURFACE INFORMATION SPARC - BUILDING 2 AND MOTOR GENERATOR BUILDING

FILE NO. 134902-003

DEVENS, MASSACHUSETTS

	GROUND		DEPTH	ELEV.	TOPS	OIL / FORES	T MAT		FILL			LOESS		GLACI	OFLUVIAL DE	POSITS	GLACIOL	ACUSTRINE I	DEPOSITS		GLACIAL TILI	L	BEDI	ROCK
EXPLORATION	SURFACE	DEPTH OF	TO WATER	OF WATER	DEPTH	TOP OF		DEPTH	TOP OF		DEPTH	TOP OF		DEPTH	TOP OF		DEPTH	TOP OF		DEPTH	TOP OF		DEPTH	TOP OF
DESIGNATION	ELEVATION	EXPLORATION	DURING DRILLING	DURING DRILLING	ТО ТОР	STRATUM	THICKNESS	ТО ТОР	STRATUM	THICKNESS	ТО ТОР	STRATUM	THICKNESS	ТО ТОР	STRATUM	THICKNESS	ТО ТОР	STRATUM	THICKNESS	TO TOP	STRATUM	THICKNESS	TO TOP	STRATUM
	(FT, NAVD88)	(FT)	(FT)	(FT)	(FT)	EL. (FT)	(FT)	(FT)	EL. (FT)	(FT)	(FT)	EL. (FT)	(FT)	(FT)	EL. (FT)	(FT)	(FT)	EL. (FT)	(FT)	(FT)	EL. (FT)	(FT)	(FT)	EL. (FT)
B-29	294	27	NE	NE	0	294	0.3	NE	NE	NE	0.3	293.7	2.2	2.5	291.5	24.5	NE	NE	NE	NE	NE	NE	NE	NE
B-30	277	27	NE	NE	0	277	0.5	0.5	276.5	2	2.5	274.5	0.5	3	274	24	NE	NE	NE	NE	NE	NE	NE	NE
B-31 (MW-3)	278	44	NE	NE	NE	NE	NE	0	278	6	NE	NE	NE	6	272	38	NE	NE	NE	NE	NE	NE	NE	NE
B-32	286	50.5	22.2	263.8	NE	NE	NE	NE	NE	NE	NE	NE	NE	0	286	41.5	NE	NE	NE	41.5	244.5	9	50.5	235.5
B-33	278	37	34.6	243.4	NE	NE	NE	0	278	9.5	9.5	268.5	1.5	11	267	23	34	244	3	NE	NE	NE	NE	NE
B-34	282	51	35.1	246.9	NE	NE	NE	0	282	5	NE	NE	NE	5	277	28.5	33.5	248.5	5.5	NE	NE	NE	39	243
B-35	291	50	NE	NE	NE	NE	NE	0	291	6	NE	NE	NE	6	285	16	22	269	16.5	38.5	252.5	11.5	50	241
B-36	288	55	38.5	249.5	0	288	2	NE	NE	NE	0	288	2	2	286	39.5	NE	NE	NE	41.5	246.5	12.5	54	234
B-37	295	54	22.7	272.3	0	295	3	NE	NE	NE	0	295	3	3	292	44.5	NE	NE	NE	47.5	247.5	6	53.5	241.5
B-38	285	50	38.6	246.4	0	285	0.5	NE	NE	NE	0.5	284.5	1.5	2	283	36.5	NE	NE	NE	38.5	246.5	5.5	44	241
B-39	282	45	16.3	265.7	NE	NE	NE	0	282	4	NE	NE	NE	4	278	28.5	NE	NE	NE	32.5	249.5	12.5	45	237
B-40	282	56.2	37.6	244.4	NE	NE	NE	NE	NE	NE	0	282	1.5	1.5	280.5	31.5	NE	NE	NE	33	249	16.5	49.5	232.5
B-41	274	37	NE	NE	NE	NE	NE	0	274	1	1	273	1.5	2.5	271.5	30.5	33	241	4	NE	NE	NE	NE	NE
B-42	273	32	NE	NE	NE	NE	NE	0	273	9	NE	NE	NE	9	264	22	31	242	1	NE	NE	NE	NE	NE
B-43	289	56.5	23.5	265.5	NE	NE	NE	0	289	3.5	NE	NE	NE	3.5	285.5	30.5	NE	NE	NE	34	255	15	49	240
B-44	292	65	27.8	264.2	NE	NE	NE	NE	NE	NE	0	292	2.5	2.5	289.5	37	NE	NE	NE	39.5	252.5	13.5	53	239
B-45 (OW)	283	71.5	35.5	247.5	0	283	0.5	NE	NE	NE	0.5	282.5	1.5	2	281	21.5	23.5	259.5	14.5	38	245	6	44	239
B-46	283	32	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	0	283	32	NE	NE	NE	NE	NE	NE	NE	NE
B-47	275	57.5	NE	NE	0	275	1	NE	NE	NE	0	275	1	1	274	33	34	241	13.3	NE	NE	NE	47.3	227.7
B-48	288	45	NE	NE	NE	NE	NE	0	288	6.5	NE	NE	NE	6.5	281.5	29.5	NE	NE	NE	36	252	6	42	246
B-49	299	77	40.5	258.5	NE	NE	NE	NE	NE	NE	0	299	1	1	298	45	NE	NE	NE	46	253	20.5	66.5	232.5
B-50	285	60	27.8	257.2	NE	NE	NE	NE	NE	NE	0	285	2	2	283	32	NE	NE	NE	34	251	9.7	43.7	241.3
B-51	282	55	28.9	253.1	0	282	2.5	NE	NE	NE	0	282	2.5	2.5	279.5	32.5	NE	NE	NE	35	247	9	44	238
B-52	283	55	36.2	246.8	0	283	0.5	NE	NE	NE	NE	NE	NE	0.5	282.5	37.5	38	245	5.5	43.5	239.5	6	49.5	233.5
B-53 (OW)	275	46.5	32.8	242.2	NE	NE	NE	0	275	5	NE	NE	NE	5	270	28.5	NE	NE	NE	33.5	241.5	10	43.5	231.5
B-54 (OW)	287	44	NE	NE	NE	NE	NE	0	287	6	NE	NE	NE	6	281	28	NE	NE	NE	34	253	1.5	35.5	251.5
B-55	286	56.5	NE	NE	0	286	0.3	NE	NE	NE	0.3	285.7	1.7	2	284	32	NE	NE	NE	34	252	19.5	53.5	232.5
B-56	281	55	NE	NE	0	281	2	NE	NE	NE	0	281	2	2	279	32	NE	NE	NE	34	247	9.5	43.5	237.5
B-57	280	37	NE	NE	0	280	2	NE	NE	NE	0	280	2	2	278	35	NE	NE	NE	NE	NE	NE	NE	NE
B-74	299	79.5	44.1	254.9	0	299	1.5	1.5	297.5	2.5	0	299	1.5	4	295	30	34	265	14	48	251	20	68	231
B-81	293	62	27	266	0	293	2	NE	NE	NE	0	293	2	2	291	42	NE	NE	NE	44	249	6	50	243
B-82	280	27	NE	NE	NE	NE	NE	NE	NE	NE	0	280	2	2	278	25	NE	NE	NE	NE	NE	NE	NE	NE
B-83 (OW)	287	72	44	243	0	287	0.3	0.3	286.7	9.7	NE	NE	NE	10	277	33	NE	NE	NE	43	244	18.5	61.5	225.5
B-117	293	65	30.4	262.6	NE	NE	NE	NE	NE	NE	0	293	2	2	291	41.5	43.5	249.5	5	48.5	244.5	6.5	55	238
B-118 (MW-9)	290	63	44	246	0	290	1.5	NE	NE	NE	1.5	288.5	2.5	4	286	39.5	NE	NE	NE	43.5	246.5	10	53.5	236.5
B-119 (MW-8)	295	57	44	251	0	295	2	NE	NE	NE	2	293	3	5	290	28.5	33.5	261.5	11.5	NE	NE	NE	45	250
B-120	287	60	NE	NE	0	287	0.5	0.5	286.5	5.5	NE	NE	NE	6	281	33	NE	NE	NE	39	248	11	50	237

NOTES

- 1. ELEVATIONS ARE IN FEET AND ARE REFERENCED TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88).
- 2. ELEVATIONS ARE BASED ON ELECTRONIC FILE "OVERALL BORING PLAN 11-11-20.DWG," PROVIDED TO HALEY & ALDRICH, INC. BY TRC ON 17 NOVEMBER 2020.
- 3. WATER LEVELS OBSERVED DURING DRILLING ARE INFLUENCED BY DRILLING OPERATIONS, THEREFORE, GROUNDWATER MAY NOT HAVE STABILIZED AND WATER LEVEL OBSERVATIONS DURING DRILLING MAY NOT BE REPRESENTATIVE OF ACTUAL GROUNDWATER CONDITIONS. REFER TO TABLE II FOR A SUMMARY OF GROUNDWATER OBSERVATIONS FROM WELLS INSTALLED IN COMPLETED BOREHOLES.

ABBREVIATIONS:

"NE": INDICATES NOT ENCOUNTERED

Page 1 of 1 Date: 2/4/2021

TABLE II SUMMARY OF GROUNDWATER OBSERVATIONS SPARC - Building 2 and Motor Generator Building Devens, Massachusetts

FILE NO. 134902-003

OBSERVATION WELL ID	GROUND SURFACE ELEV. (FT)	DATE	DEPTH TO GROUNDWATER (FT)	ELEVATION OF GROUNDWATER (FT)
	, ,	10/6/2020	38.6	239.4
		10/12/2020	38.9	239.1
		10/23/2020	39.2	238.8
B-31 (MW-3)	278	11/9/2020	39.1	238.9
		11/24/2020	39.9	238.1
		12/12/2020	40.1	237.9
		10/6/2020	37.9	245.1
		10/12/2020	38.4	244.6
D 45 (OW)	283	10/23/2020	38.7	244.3
B-45 (OW)	203	11/9/2020	39.4	243.6
		11/24/2020	39.7	243.3
		12/12/2020	40.3	242.7
		11/9/2020	37.7	237.3
B-53 (OW)	275	11/24/2020	38.2	236.8
		12/12/2020	38.7	236.3
		10/23/2020	36.5	250.5
D 54 (OM)	007	11/9/2020	37.3	249.7
B-54 (OW)	287	11/24/2020	37.3	249.7
		12/12/2020	37.6	249.4
		11/9/2020	45.2	241.8
B-83 (OW)	287	11/24/2020	45.4	241.6
		12/12/2020	45.6	241.5
		10/23/2020	44.3	245.7
D 449 (M)A/ ()	290	11/9/2020	44.6	245.4
B-118 (MW-9)	290	11/24/2020	45.0	245.0
		12/12/2020	45.4	244.6
		10/12/2020	45.4	249.6
		10/23/2020	45.1	249.9
B-119 (MW-8)	295	11/9/2020	45.7	249.3
		11/24/2020	45.5	249.5
		12/12/2020	45.6	249.4

NOTES

- 1. ELEVATIONS ARE IN FEET AND ARE REFERENCED TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88).
- 2. ELEVATIONS ARE BASED ON DRAWING, OVERALL BORING PLAN 11-11-20, DATED 24 AUGUST 2020, PROVIDED TO HALEY & ALDRICH, INC. BY TRC ON 17 NOVEMBER 2020.

Page 1 of 1 Printed: 2/4/2021

IDENTIFICATION AND DESCRIPTION OF SUBSURFACE MATERIALS

SOIL

Soil description on logs of subsurface explorations are based on Standard Penetration Test results, visual-manual examination of exposed soil and soil samples, and the results of laboratory tests on selected samples. The criteria, descriptive terms and definitions are as follows:

DENSITY OR CONSISTENCY

Density of Cohesionless Soils	Penetration Resistance (Blows per ft.)	Consistency of Cohesive Soils	Penetration Resistance (Blows per ft.)
Very Loose	0-4	Very Soft	0-2
Loose	5-10	Soft	3-4
Medium	11-30	Medium	5-8
Dense	31-50	Stiff	9-15
Very Dense	over 50	Very Stiff	16-30
-		Hard	over 30

PENETRATION RESISTANCE

12"

305 mm

MAJOR DIVISIONS

Boulders

Coarse grained

more than half

is larger

than number

200 sieve

Fined-grained

soils:

more than half

smaller than

number 200

sieve

Standard Penetration Test (ASTM D-1586) - Number of blows required to drive a standard 2 in. O.D. split spoon sampler 1 ft. with a 140 lb. weight falling freely through 30 in.

3"

76 mm

Gravels

More than half

of coarse

fraction is larger

than number 4

sieve

Sands

More than half

of coarse

fraction is

smaller than

number 4 sieve

Coarse

U.S. Standard Series Seive

Fine

Gravels with

little or no fines

Gravels with

over 12% fines

Sands with little

or no fines

Sands with over

12% fines

Silts and Clays

Liquid limit 50% or less

Silts and Clays

Liquid limit greater than 50%

3/4"

Gravel

19 mm

COLOR: Basic colors and combinations: black, brown, gray, yellow-brown, etc.

Cobbles

SUPPLEMENTAL SOIL TERMINOLOGY:

Laminae - 0 to 1/16 in. thick (granular) Parting - 1/16 to 1/2 in. thick Layer - 1/2 to 12 in. thick - > 12 in. thick Stratum - Small, erratic deposit less than 12 in. size Pocket

- Lenticular deposit larger than a pocket Lens Occasional - One or less per 12 in, of thickness Frequent - More than one per 12 in, of thickness Interbedded - Alternating soil layers of differing composition - Alternating thin seams of silt and clay Varved

Mottled - Variation of color

GEOLOGIC INTERPRETATION

Sand

Medium

10

2.00 mm

Coarse

Symbol

GΡ

GM

GC

SW

SP

SM

SC

ML

CL

OL

MH

СН

ОН

РΤ

GW 🔭

4.75 mm

UNIFIED SOIL CLASSIFICATION SYSTEM

Deposit type - GLACIAL TILL, ALLUVIUM, FILL....

40

0.43 mm

Well graded gravels, gravel-sand mixtures

Poorly graded gravels, gravel-sand mixtures

Well graded sands, gravelly sands

Poorly graded sands, gravelly sands

Silty sands, poorly graded sand-silt mixtures

sands or clayey silts with slight plasticity

Inorganic clays of high plasticity, fat clays

clays, silty clays, lean clays

elastic silts

Clayey sands, poorly graded sand-clay mixtures

Organic clays and organic silty clays of low plasticity

Organic clays of medium to high plasticity, organic silts

Inorganic silts and very fine sands, rock flour, silty or clayey fine

Inorganic clays of low to medium plasticity, gravelly clays, sandy

Inorganic silty, micaceous or diatomaceous fine sandy or silty soils,

Silty gravels, poorly graded gravel-sand-silt mixtures

Clayey gravels, poorly graded gravel-sand-clay mixtures

The natural soils are identified by criteria of Unified Soil Classification System (USCS), with appropriate group symbol in parenthesis for each soil description. Fill materials may not be classified by USCS criteria.

Fine

Clear Square Sieve Openings

200

0.074 mm

TYPICAL NAMES

Silts and Clays

Rock descriptions noted on logs of subsurface explorations are based on - 0 to 1/16 in. thick (cohesive) visual-manual examination of exposed rock outcrops and core samples. The criteria, descriptive terms and definitions used are as follows:

Hard

FIELD HARDNESS: A measure of resistance to scratching. Cannot be scratched with a knife point Very Hard

or sharp pick.

Can be scratched with a knife point or sharp pick, only with difficulty.

Moderately Hard Can be readily scratched with a knife

point or pick.

Medium Hard Can be grooved or gouged 1/16 in. deep with firm pressure on a knife point or

sharp pick.

Can be grooved or gouged easily with a Soft

knife point or pick.

Very Soft Can be carved with a knife and excavated

with a pick point.

WEATHERING: The action of organic and inorganic and chemical and physical processes resulting in alteration of

color, texture and composition.

Fresh-FR No visible sign of alteration, except

perhaps slight discoloration on major

discontinuity surfaces.

Discoloration of rock material and Slight-SL discontinuity surfaces. All rock may be

discolored and/or somewhat weaker than in its fresh condition

Moderate-MOD Less than half the rock material is decomposed and/or disintegrated to a soil. Some fresh or

discolored rock is present as either a continuous

framework or as corestones.

High-HIGH More than half the rock material is

decomposed and/or disintegrated to a soil. Fresh or discolored rock is present as either a discontinuous framework or as corestones.

Complete-COMP All rock material is decomposed and/or

disintegrated to soil. The original mass

structure is largely intact.

Residual Soil All rock material is converted to soil. The mass structure and material fabric are destroyed.

> There has been a large change of volume, but the material has not been significantly

transported.

COLOR: Basic colors and combinations: gray, light gray, brown,

TEXTURE: Size, shape and arrangements of constituents.

Term Igneous Sedimentary > 5 mm > 2 mm Coarse-grained Medium-grained 0.625 - 2 mm 1 - 5 mm < 0.625 mm < 1 mm Fine-grained Aphanitic

Individual grains invisible to the unaided eye.

LITHOLOGY: Rock classification and modifiers;

accepted formation names.

ROCK

DISCONTINUITIES:

Type A natural fracture along which no Joint

Definition

displacement has occurred. May occur in parallel groups called sets.

A natural fracture along which

displacement has occurred. Surface may be slickensided or striated.

A natural fracture along which

displacement has occurred. Usually

lined with gouge and slickensides.

Zone of fractured rock and gouge Shear or Fault bordering the displacement plane.

Zone

Shear

Fault

ORIENTATION/ATTITUDE:

Term	Angle (degrees)
Horizontal	0-5
Low Angle	6-35
Moderately Dipping	36-55
High Angle	56-85
Vertical	86-100

SPACING:

Discontinuity Term	Bedding Term	Inches
Extremely Close	Extremely Thin	< 3/4
Very Close	Very Thin	3/4 - 2.5
Close	Thin	2.5 - 8
Moderate	Medium	8 - 24
Wide	Thick	24 - 80
Very Wide	Very Thick	80 - 240
Extremely Wide	Extremely Thick	> 240

PERSISTENCE/CONTINUITY: APERTURE/GAP:

Torm	Foot	T	Distance
Term_	<u>Feet</u>	<u>Term</u>	<u>Distance</u>
Very Low	0-3	Very Tight	< 0.1mm
Low	3-10	Tight	0.1mm-0.25mm
Medium	10-35	Partly Open	0.25mm-0.5mm
High	35-65	Open	0.5mm-2.5mm
Very High	> 65	Moderately Wide	2.5mm-1cm
		Wide	> 1cm
		Very Wide	1cm-10cm
		Extremely Wide	10cm-1m

Cavernous

> 1m

POROSITY:

Type

Primary

Pre-depositional and depositional inter- and intra- granular, particle, or crystalline pores.

Secondary:

Solution features including pits, vugs, caverns, molds, and channels. Fracture features including joints, shears, faults, shrinkage and breccia fabrics.

> Micro < 0.0625 mm 0.0625-4.0 mm Meso Mega 4.0-256 mm

SUBSURFACE EXPLORATION KEY

GENERAL NOTES

1. Logs of subsurface explorations depict soil, rock and groundwater conditions only at the locations specified on the dates indicated. Subsurface conditions may vary at other locations and at other times.

Highly organic soils

2. Water levels noted on the logs were measured at the times and under the conditions indicated. During test borings, these water levels could have been affected by the introduction of water into the borehole, extraction of tools on other procedures and thus may not reflect actual groundwater level at the test boring location. Groundwater level fluctuations may also occur as a result of variations in precipitation, temperature, season, tides, adjacent construction activities and pumping of water supply wells and construction dewatering systems.

Peat and other highly organic soils

Type Inside Diamet Hammer Weig Hammer Fall (t) Volume S	eter (iii eight (in.)	MMOI C COM (in.) (lb)	NWEAL MPANIE Casing NW 3 Spun	Samp S 1 3/4 30	oler Barrel 8 0	MOTOR GENERATOR BUMS Drilling Equipment Rig Make & Model: Acke Bit Type: Roller Bit Drill Mud: Polymer Casing: NW Spun 50 ft Hoist/Hammer: Automa	and Procedures		Sh Sta Fir Dr H8 Ele	e No neet art nish iller &A F evan	No Rep	0. 1 24 24 G. l	of I Au I Au Pee D. 27	2 igus igus I Wa 3.0	st 20 st 20 arre)20 n	
Hammer Weight Hammer Fall (1) OPOTO WOH/24 Sin.	eight (in.)	Sample (dl) (Depth (ft)	NW 3 Spun	S 1 3/3 140 30 loquuks	 8 0 -	Rig Make & Model: Acker Bit Type: Roller Bit Drill Mud: Polymer Casing: NW Spun 50 ft Hoist/Hammer: Automate	erXLS		Dr H8 Ele Da	iller &A F eva	Rep	G. I	Pee D. 27	1 Wa 3.0	arre	n	
Hammer Weight Hammer Fall (1) OPOTO WOH/24 Sin.	eight (in.)	Sample (gl)	3 Spun	1 3/3 140 30 loguks	8	Bit Type: Roller Bit Drill Mud: Polymer Casing: NW Spun 50 ft Hoist/Hammer: Automa			Ele Da	eva	tion		27	3.0			
Hammer Weighammer Fall O Depth (tt) Swoll and the State of State	eight (in.)	Sample (gl)	Spun <u>£</u>	30 logmyS		Drill Mud: Polymer Casing: NW Spun 50 ft Hoist/Hammer: Automa	ntia Hammar		Da			1					
Hammer Fall O Debth (tt) O WOH/24 S in. WOH/24 S in. Samble No. WOH/18 S in.	S2	Sample ()	· 	Symbol 30	-	Casing: NW Spun 50 ft Hoist/Hammer: Automa	otio Hammor			ituii			NI A	٩VD	ነ ጸጸ		
WOH/24 S in. 4 WOH/24 S in. 6 WOH/24 S in. 3 WOH/18 S in. 8	S1 4	0.0	Stratum Change Elev/Depth (ft)	Symbol Symbol	VISI	aa a madoi. NA	auc nammer		Lo	cati		S					
WOH/24 S in. 4 WOH/24 S in. 6 WOH/24 S in. 3 WOH/18 S in. 8	S1 4	0.0	Stratuı Chang Elev/Dept	Sy	*100	AL-MANUAL IDENTIFICATION	N AND DESCRIPTION	t		avel	-	San	d		F	Ś	Test
WOH/24 S in. 4 WOH/24 S in. 6 WOH/24 S in. 3 WOH/18 S in. 8	4 S2	0.0		nscs	(Density	/consistency, color, GROUP N structure, odor, moisture, opti GEOLOGIC INTERPRE	onal descriptions		% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
in. 6 WOH/24 S in. 3 5 - WOH/18 S in. 8				OL/OH	Very soft brown structure, no o	n sandy ORGANIC SOIL (OL/dor, dry	OH) mps = < 1mm, no						40	60			7
in. 3 WOH/18 S in. 8	6	2.0 4.0	-	SM	Very loose tan no odor, dry	silty SAND with trace gravel (SM) mps= 1.5 in., no stru	ıcture,	5				60	35			
in. 8	S3 3	4.0 6.0		SM		re except with no gravel tory grain size analysis perfor	med on composite S1 to S	S3 by				5	60	35			
8 8	S4 8	6.0 8.0	_	SM	Similar to abov	re							60	40			
8 S						-FILL-											
9 1	S5 10	8.0 10.0	264.0 9.0	SM		brown silty SAND with gravel	. , .		10	10	5	5	35	35			
10					indicate boring	located within footprint of UX	O clearance trench										
		15.0 17.0		ML	odor, moist	light brown sandy SILT (ML) tory grain size analysis perfon	•	e, no				1	43	56			
						-GLACIOFLUVIAL DE	POSITS-										
20	Wat	iter Le	vel Data	a		Sample ID	Well Diagram				Sum	ı ma	ıry_				_
Date Ti	Time .	Elap Time	(hr Bo	ttom E	Bottom Water	O - Open End Rod T - Thin Wall Tube U - Undisturbed Sample	Riser Pipe Screen Filter Sand Cuttings	Overb	Со	red	•	:)		32			
			D.: .			S - Split Spoon Sample	Grout Concrete Bentonite Seal	Borir	ng	No		S		В	-42		_
Field Tests:			Toughn	ess: L -	Rapid S - Slow Low M - Mediunetermined by direction	m H - High Dry Str	ity: N - Nonplastic L - Lov ength: N - None L - Low										

Н	XLE	Y	н			TEST BORING REPORT	F	ile l	No.		349	02-0	003	-42		
				-	<u></u>		_	shee avel	_	o. Sand		of	_	iald	Tes	-
(#)	Blov in	e No in	ple (#)	um ige pth (f	ymb	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION			, g	트				SS		
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol	(Density/consistency, color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
- 20 - - -	16 14 19 25	S7 15	20.0 22.0		SM	Dense light brown-gray silty SAND with gravel (SM) mps= 0.75 in., no structure, no odor, moist NOTE: Laboratory grain size analysis performed on S7 by TRC		21	12	24	28	15				
-						-GLACIOFLUVIAL DEPOSITS-										
- - 25 - -	26 15 13 16	S8 12	25.0 27.0		SW	Medium dense brown well graded SAND with trace gravel (SW) mps = 0.75 in., no structure, no odor, moist		5	15	40	40					
- - - 30 -	10 10	S9 12	30.0 31.0	242.0 31.0	SW	Medium dense brown well graded SAND (SW) mps= 0.25 in., no structure, no odor, wet				50						
	8	S9A 5	31.0 32.0		ML	S9A: Medium dense brown sandy SILT with trace gravel (ML) mps=0.75 in., no structure, no odor, wet		5	5	5	35	50				
-			32.0	241.0 32.0		-GLACIOLACUSTRINE DEPOSITS- BOTTOM OF EXPLORATION 32 FT.	\vdash								+	_
	NOTE:	Soil id	entifica	tion base	d on vi	sual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	В	ori	ng	No.			В	-42		_

Н		PRIC	Н			-	ΓEST	BORING REPOI	RT							B		UV	١
Pro Clie Cor	-	CC	OMMO	ONWE			G 2 AND N SYSTE	MOTOR GENERATOR B MS	UILDING, DEVENS, I	МА	Sh St		No). 1 23	of Oc	2-00 2 tobe	r 202		
				Casi	ng Sar	npler	Barrel	Drilling Equipmer	nt and Procedures			iller			Pete			-	
Тур	е			NW	/	s		Rig Make & Model: Ack	er XLS		Нδ	&A I	Rep).	D.	War	ren		
Insid	de Dia	meter	(in.)	3	1	3/8		Bit Type: Roller Bit Drill Mud: Polymer					tior	1		5.0	00		
Han	nmer \	Veight	(lb)		1	40	-	Casing: NW Spun 46.5				atun cat		S		NVD Plan	00		-
Han	nmer l	all (in	.)		3	30	-	Hoist/Hammer: Autom PID Make & Model: NA											
£	Blows in.	9 °C	o €	am	Stratum Change Elev/Depth (ft)	log	VI	SUAL-MANUAL IDENTIFICAT		1	Gra	avel	_	San	d		Fiel		3
Depth (ft)	e Bl	ole l	mple th (f	iagr	aturr ange epth	Symbol	(Den:	sity/consistency, color, GROU	IP NAME. max. particle s	ize [†] .	arse	σ,	Coarse	dium	a)	Se	ncy ness	jį	;
Dep	Sampler I per 6	Sample No. & Rec. (in.)	Sample Denth (ff)	Well Diagram	St.	nscs	,	structure, odor, moisture, odo	optional descriptions	,	% Coarse	% Fine	% Co	% Medium	% Fine	% Fines	Dilatancy	Plasticity	5
- 0 -	<i>ග</i> 3	0) ∞ S1	0.0			SM	Medium	dense tan silty SAND with gra	,	0	6	17	_	-	<i>∝</i> 28	_	7	Δ.	-
	7 22	10	2.0	7.7			structure	, no odor, moist	. , .										
	10				:}		NOTE: L	aboratory grain size analysis	penonned on 51 by TRO	,									
	9	S2	2.0	F-1 F	::	SM		own to gray silty SAND with g	gravel (SM) mps= 1.5 in.	, no	10	10	5	10	50	15			
	17 29	15	4.0		:		structure	, no odor, moist											
	21					SM	Similar to				10	10	10	10	45	15			
	19 15	S3 10	4.0	1 • 1 1	:]		NOTE: Land S3 b	aboratory grain size analysis y TRC	performed on composite	S2									
5 -	10	S3A	5.0 5.0		270.0 5.0	SW		-FILL-		-15	15	15	20	20	30	+	+	+	_
		7	6.0	—::1 ŀ	:	SW	in., stratif	dense brown well graded SAI ïed, no odor, dry	שווח gravei (SW) mps	5- 1.5	15	15	25	25	20				
	17 15	S4 16	6.0 8.0			SVV	Similar to	above, with cobbles			15	15	25	25	20				
	12 19																		
	48	S5	8.0			sw	Dense br	own well graded SAND with	gravel (SW) mps= 1.5 in	., no	10	10	20	25	35				
	23 12	16	10.0	In Tal In				, no odor, moist, with cobbles aboratory grain size analysis		S4									
	20						and S5 b		pononnou on composito										
- 10 –								-GLACIOFLUVIAL	DEPOSITS-										
					:														
					262.5 12.5						-	+-	+-	┼-	\vdash	-+	+	+	-
					:														
								-GLACIOFLUVIAL	DEPOSITS-										
15-	4.4					SP-	Denos t-	n poorly graded SAND with s	ilt (SD SM) mnc= 0.25 :-			4	10	11	32	10			
	11 19	S6 16	15.0 17.0	1 - 1 1		SM-	weakly st	ratified, dry	, , ,	•		4	10	44	32	10			
	16 18				:]		NOTE: L	aboratory grain size analysis	performed on S6 by TR0	<i>;</i>									
					:]														
					256.5 18.5	+						+-	+-	╁-	\vdash	-+	+	+	-
20 -		W:	ater I	:: _evel l	:₊ Data			Sample ID	Well Diagram				Sum	nma	ırv				=
ח	ate	Time	Ela	apsed	Dep	th (ft)		O - Open End Rod	Riser Pipe	Overl	our					6.5			
	и. С	711110	Tim	e (hr.	Bottom of Casing	Botton of Hole		T - Thin Wall Tube	Screen Filter Sand	Rock			•	,					
10/29	9/2020	1600				44.5	32.8	U - Undisturbed Sample S - Split Spoon Sample	Cuttings Grout	Samp	oles	5		S					_
		Initia	al OW	readi	ng, not st	abilzed			Concrete Bentonite Sea	Bori	ng	No	Э.		В	-53(OW)	
Field	d Tests	: :					S - Slow	N - None Plastic	city: N - Nonplastic L - L	ow M - N	ledi	um	H	High	١ .	/a ·	lie-t		
+	4 84-	vimum	nartic	l OU	<u>igπness:</u> (mne) ie	<u>L - LOW</u>	ıvı - Mediui ined by dir	m H - High Dry St ect observation within the lin	rength: N - None L - Lo	<u>v IVI - Med</u>	ulun	n F	<u>ı - H</u>	ıgn	v - \	ery l	ııgn		-

Н	ALE	Y	Н			7	TEST BORING REPORT	F		No.	1	349	02-0		(OV	V)	
				E	£	-		_	hee	_	o. San		of	_	ield	Te:	_
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Well Diagram	Stratum Change Elev/Depth (ft)	S Symbol	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions	% Coarse		% Coarse	% Medium		% Fines	Dilatancy	SS	Plasticity	
	Sam	Sar & F	S	_		nscs	GEOLOGIC INTERPRETATION)	+	% Fine		_	% Fine	% F	Dilat	Tou	Plas	
20 =	23 38 39 55	S7 15	20.0 22.0			SW	Very dense brown well graded SAND with gravel (SW) mps= 1.5 in., no structure, no odor, dry, with cobbles	15	15	20	20	30					
25 –	30 27 30 46	S8 18	25.0 27.0			sw	Similar to above NOTE: Laboratory grain size analysis performed on composite S7 and S8 by TRC	15	15	25	25	20					
							-GLACIOFLUVIAL DEPOSITS-										
30 -	12 11 20 17	S9 18	30.0 32.0			SW- SM	Dense brown well graded SAND with silt and gravel (SW-SM), mps=1.5 in., no structure, no odor, dry, with cobbles NOTE: Laboratory grain size analysis performed on S9 by TRC	17	26	11	21	12	13				
35 –	12 12 15 21	S10 18	35.0 37.0		241.5 33.5	SM	Medium dense brown silty SAND (SM) mps= 0.5 in., no structure, no odor, moist to wet Note: Laboratory grain size analysis performed on S10 by TRC		14	6	16	28	36				
							-GLACIAL TILL-										
40 -	17 18 40 32	S11 15	40.0 42.0			ML/SM	Very dense brown sandy SILT (ML) with seams of silty SAND (SM) mps= 0.75 in., no structure, no odor, wet Note: Laboratory grain size analysis performed on S11 by TRC	4	11	6	18	31	30				
					231.5 43.5		Dril action indicates strata change at 43.5 ft. TOP OF PROBABLE BEDROCK 43.5 FT.										_
45 -							-PROBABLE BEDROCK-										
	80/0in	NR	45.0 45.0		228.5 46.5		No Recovery, spoon refusal at 45 ft. Spun casing advancer wih button bit to 46.5 ft. Drill action indicates hard, slightly fractured bedrock.										
					40.5		BOTTOM OF EXPLORATION 46.5 FT.										
							Groundwater observation well installed at 44.5 ft. upon completion.										
																_	-

Н	ALDRICH	(GR	OUNDWA INST <i>A</i>			RVATIC REPOR		LL	Well No	D. B-53(OW)
Pr	oject SPARC F	PROJEC	T BL	JLDING 2 AND N	MOTOR	GENERA	TOR BUILD	ING We	ell Diagram	File No. 13	4902-003
Lo	cation DEVENS,	, MA							Riser Pipe		ed 29 Oct 2020
CI	ient COMMON	WEAL	ΓH FU	JSION SYSTEM	IS				Screen Filter Sand	H&A Rep. Location S	
Co	ontractor TRC C	OMPAN	IIES						Cuttings Grout	Location	
Dr	iller A. Pete	ers						* * * *	Concrete	Ground El.	275.0
lı	nitial Water Level (depth b	gs)	32.0 f	t				Bentonite Seal	Datum NA	AVD 88
	SOIL/RO	CK		WELL	_	N O					
	CONDITIONS	DEPTH (ft.)	GRAPHIC	DETAILS	DEPTH (ft.)	ELEVATION (ft.)		WELI	L CONSTRU	JCTION I	DETAILS
							Тур	e of prote	ective cover		None
-0				D0000 D0000	0.0	275.0	He	eight of N	A above ground su	rface	NA
-	FILL						He	eight of to	p of riser above gr	ound surface	2.0 ft
- -5	_	5.0					Тур		ctive casing		NA
ļ								Length			-
ţ								Inside di	ameter		
73 Dec 20 - 39 Dec 20								Depth of	bottom of NA		
29 -							Туре	e of riser p	pipe	Scl	hedule 40 PVC
15 -15								Inside di	ameter of riser pip	е	2.0 in
Ö-Ö								Depth of	bottom of riser pip	pe	34.5 ft
75-001-								Type of S	eals Top of S	Seal (ft)	Thickness (ft)
% -20 E-							_	Bentonit	e28.	0	4.0
902/GIN							_				
TS/134							_				
일-25 양-	GLACIOFLUVIAL						_				
SHARE\CF\I	DEPOSITS				28.0	247.0	Dia	meter of t	oorehole		~5.0
-30 -30					20.0	040.0	Dep		of well screen		34.5 ft
ALDRIC					32.0	243.0		Type of	screen	Ma <u>chir</u>	ne slotted Sch 40 PVC
-35		33.5			34.5	240.5			gauge or size of op	penings	0.010 in
PORT-0								Diamete	r of screen		2.0 in.
NOI -	GLACIAL TILL							Type of	Backfill around Sci	reen	Filter Sand
CAN NSTALLATION REPORT-09									bottom of well scr	reen	44.5 ft
- 1		 43.5				000 -	Bot	ttom of si	t trap		
975.SG -45	BEDROCK				44.5	230.5			tom of well		44.5 ft
45 C	OMMENTS:	46.5		I	l		l ⊸ De	pth of bot	tom of borehole		46.5 ft

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 T: 781.278.3700 F: 781.278.5701 F: 781.278.5702 www.gza.com

APPENDIX B.5

2024 GZA TEST BORING LOGS

BORING LOG GUIDE

BORING LOG LEGEND

GS Elev. = Ground Surface Elevation Stab. = Stabilization Time for groundwater reading

NAVD = North American Vertical Datum WOH = Weight of Hammer NR = No Recovery WOR = Weight of Rods

S.S. = Split Spoon

SOIL DESCRIPTIONS

Soil samples are described on the exploration logs by the "Modified Burmister Soil Identification System". The following provides a brief description of the Modified Burmister System.

1. Major and minor components of the soil matrix are identified as gravel, sand or fines. The relative amounts of these constituents are proportioned as:

Component	Proportional Term	Percent by Weight of Total
Major		Greater than percentage of other components
Minor	And	35-50
	Some	20-35
	Little	10-20
	Trace	1-10

2. The nature of "fines" is defined by using the following guidelines:

Degree of Plasticity	Identity	Plasticity Index
Non-plastic	SILT	0
Slight	Clayey SILT	1-5
Low	SILT & CLAY	5-10
Medium	CLAY & SILT	10-20
High	Silty CLAY	20-40
Very High	CLAY	40 and Greater

3. For boring logs, relative density or consistency is identified based on standard penetration resistance, using the following table.

Non-Pla	stic Soils	Plastic Soils					
Blows/ft "N"	Relative Density	Blows/ft "N"	Consistency				
0-4	Very Loose	<2	Very Soft				
4-10	Loose	2-4	Soft				
10-30	Medium Dense	4-8	Medium Stiff				
30-50	Dense	8-15	Stiff				
>50	Very Dense	15-30	Very Stiff				
		>30	Hard				

BEDROCK DESCRIPTIONS

Rock samples described on the exploration logs are generally based on the International Society of Rock Mechanics (ISRM) System, as generally described on the following page. Each rock sample was generally described using the following guideline, in the order presented:

- 1. Field hardness: very hard, hard, moderately hard, medium, soft, very soft
- 2. Weathering: fresh, very slight, slight, moderate, moderately severe, severe, very severe, complete
- 3. Rock continuity (fracturing): extremely, moderately, slightly, sound
- 4. Texture: amorphous, fine, medium, coarse, very coarse
- 5. Color
- 6. Rock type
- 7. Fractures, Bedding, and Foliation, Spacing and Attitude
- 8. Rock Quality Designation (RQD)

Foreman:

GeoEnvironmental, Inc. Engineers and Scientists

Commonwealth Fusion Systems Proposed Development Hospital Road Devens, Massachusetts

BORING NO.: **GZ-5 (OW)** SHEET: 1 of 2 PROJECT NO: 01.0174955.20 REVIEWED BY: MJO

Drilling Co.: New England Boring Contractor Type of Rig: ATV

Walter Hoeckele D. Walsh Logged By:

Rig Model: Mobile B-53 Drilling Method: D & W

Boring Location: See Plan Ground Surface Elev. (ft.): 281 Final Boring Depth (ft.): 64

Date Start - Finish: 10/28/2024 - 10/30/2024

H. Datum: See Plan V. Datum: NAVD88

Auger/Casing Type: HW I.D./O.D.: 4"/4.5" Hmr Weight (lb.): 140 Hmr Fall (in.): 30" Other: Automatic

Sampler Type: Split Spoon I.D./O.D (in.): 1.375/2 Sampler Hmr Wt: 140 Sampler Hmr Fall: 30 Other: Autohammer

Groundwater Depth (ft.) Date Time Water Depth Casing Stab. Time 0715 40.8 17 hrs. 10/30/24 49 11/21/24 22 days 09:30 41.7 Well

	Casing		:	Samp	le				¥	Eigle	_ Stratum	Equipment Installed
Depth (ft)	Blows/ Core Rate Min/ft	No.	Depth (ft.)		Rec. (in)	Blows (per 6 in.)	SPT Value	Sample Description Modified Burmister	Remark	Field Test Data	Stratum Stratum Description	4" Standpipe
_		S-1	0-2	24	16	10 19 16 21	35	S-1: Dense, gray GRAVEL and fine to coarse SAND, little Silt.	1	ND	FILL	Concrete (0-1')
-		S-2	2-4	24	11	12 11 9 11	20	S-2: Medium dense, brown fine to coarse SAND and GRAVEL, little	2	ND	2' 279.	<u>0</u>
5 _		S-3	4-6	24	13	19 21 22 23	43	Silt. S-3: Dense, brown, fine to coarse SAND, some Gravel, little Silt.	4	ND		
-		S-4	6-8	24	22	22 24 28 19	52	S-4: Very dense, brown to gray, fine to coarse SAND and GRAVEL, little		ND		
10		S-5	8-10	24	13	6 9 15 17	24	Silt. S-5: Top 7": Brown, fine to medium SAND, little Gravel, trace Silt. Bottom 6": Brown, fine to coarse SAND and GRAVEL, little Silt.		ND		2" PVC Riser (0-36')
15 _		S-6	14-16	24	12	6 11 12 16	23	S-6: Medium dense, brown, fine to coarse SAND, some Gravel, little Silt.		ND	SAND/GRAVEL	Soil Cuttings (1-29')
20		S-7	19-21	24	12	10 32 43 40	75	S-7: Very dense, brown GRAVEL and fine to coarse SAND, little Silt.		ND		
25 - - -		S-8	24-26	24	16	28 63 60 60	R	S-8: Top 7": Brown GRAVEL and fine to coarse SAND, little Silt. Middle 5": Gray, fine to coarse SAND, some Gravel, little Silt. Bottom 4": Brown GRAVEL and fine to coarse Sand, some Silt.		ND		
30		S-9	29-31	24	10	16 17	32	S-9: Medium dense, brown GRAVEL		ND		

4. Advanced borehole to sample depths via cased drive and wash techniques from 0 to 49 feet bgs (below ground surface).

174955.20 COMM FUSIONS.GPJ; STANDARD BORING W/E W/O SMP 2PG2; 12/2/2024 REMARKS

See log key for explanation of sample descriptions and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

Boring No.: GZ-5 (OW)

^{1.} Ground surface elevation estimated from topography depicted on an AutoCAD .dwg file titled "CFS Composite Existing Surface - polylines," transmitted to GZA on September 16, 2024.
2. Boring offset 1.3 N and 3.5 W due to temporary building obstruction.
3. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a lon Science Phocheck Tiger organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates not detected above instrument detection limit (<0.1 ppmv).

GeoEnvironmental, Inc. Engineers and Scientists

Commonwealth Fusion Systems Proposed Development Hospital Road Devens, Massachusetts

BORING NO.: GZ-5 (OW) SHEET: 2 of 2 PROJECT NO: 01.0174955.20 REVIEWED BY: MJO

epth	Casing Blows/			Samp				Sample Description	ar	Field	Stratum	
(ft)	Core Rate Min/ft	No.	Depth (ft.)	Pen. (in)		Blows (per 6 in.)	SPT Value	Modified Burmister	Remark	Test Data	Stratum Stratum Stratum	Equipment Installed
	WIIIVIC		, ,		,	15 26		and fine to coarse SAND, some Silt.				Bentonite (29-31')
5_		S-10	34-36	24	14	29 43 43 92	86	S-10: Top 5": Orange GRAVEL, some fine to coarse Sand, little Silt. Bottom 9": Brown to gray, fine to coarse SAND and GRAVEL, little Silt.		ND		⋖ −Sand (31-46'
)		S-11	39-41	24	12	26 42 36 51	78	S-11: Very dense, brown with orange staining, GRAVEL and fine to coarse SAND, some Silt.	5	ND	SAND/GRAVEL	2" PVC Scre (36-46')
; _ _		S-12	44-46	24	13	11 19 23 16	42	S-12: Dense, brown fine to coarse SAND and GRAVEL, some Silt.		ND		
		S-13	49-51	24	10	7 26 38 15	64	S-13: Very dense, gray SILT, some fine to coarse Sand, some Gravel.	6	ND .	<u>47.5'</u> 233. <u>5'</u>	
-		S-14	54-56	24	15	24 28 25 34	53	S-14: Very dense, brown fine to coarse SAND, some Gravel, some Silt.		ND	GLACIAL TILL	
- - - -		S-15	59-61	24	15	25 38 51 46	89	S-15: Very dense, brown, fine to coarse SAND, some Silt, little Gravel.		ND		
											64' 217.0'	
- 1				1			1	Bottom of boring at 64 feet.	7	1		

5. A 300 pound hammer was used to advance the casing from 39 to 44 feet due to apparent increased resistance.
6. Advanced borehole to sample depths using open hole wash techniques from 49 to 64 feet bgs.
7. Upon completion, boring backfilled with drill cuttings to ground surface.

174955.20 COMM FUSIONS.GPJ; STANDARD BORING W/E W/O SMP 2PG2; 12/2/2024

REMARKS

See log key for explanation of sample descriptions and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

Boring No.: GZ-5 (OW)

GZA

Foreman:

Logged By:

GeoEnvironmental, Inc. Engineers and Scientists

Commonwealth Fusion Systems Proposed Development Hospital Road Devens, Massachusetts

BORING NO.: GZ-9 SHEET: 1 of 1 PROJECT NO: 01.0174955.20 REVIEWED BY: MJO

Drilling Co.: New England Boring Contractor Type of Rig: ATV

Walter Hoeckele M. Ostrowski

Rig Model: Mobile B-53 Drilling Method: HSA

Boring Location: See Plan Ground Surface Elev. (ft.): 264 Final Boring Depth (ft.): 21

Date Start - Finish: 10/31/2024 - 10/31/2024

H. Datum: See Plan

V. Datum: NAVD88

Auger/Casing Type: HSA I.D./O.D.: 2.25/6 Hmr Weight (lb.): Hmr Fall (in.): Other:

Sampler Type: Split Spoon I.D./O.D (in.): 1.375/2 Sampler Hmr Wt: 140 Sampler Hmr Fall: 30 Other: Autohammer

Groundwater Depth (ft.) Date Time Water Depth Casing Stab. Time 1325 Dry (19') 10/31/24 5 min.

Oute	Casing			C					┵				Equipment Installed
Depth	Blows/			Samp				Sample Description	ar	Field	€ Stratum	.	Equipment installed
(ft)	Core Rate	No.	Depth	Pen.		Blows	SPT	Maraiera de Dania de La constitución de la constitu	Remark	Test	Stratum Stratum Description	(#)	
	Min/ft	S-1	(ft.) 0-2	(in)	(in)	(per 6 in.) 6 17	Value 29	S-1: (Top 8") Brown, fine to coarse		Data ND			
		3-1	0-2	24	16		23	, , ,	1	IND	0.7' FILL	263.3'	No Equipment Installed
_	1					12 10		SAND, some Gravel, little Silt, dry.	2				
-	-	S-2	2-4	24	16	16 23	48	S-1: (Bottom 8") Brown, fine to		ND			
		3-2	2-4	24	10		0	coarse SAND, some Gravel, little (-)		IND			
						25 21		Silt, dry.					
-	1	S-3	4-6	24	12	14 18	34	S-2: Dense, brown, fine to coarse		ND			
5 _	1		' "	- '	'-	16 17		SAND and GRAVEL, little Silt, dry.					
						10 17		S-3: Dense, brown, fine to coarse					
-	1							SAND and GRAVEL, some Silt, dry.					
-	-							-					
_	1												
	1	S-4	9-11	24	15	10 21	53	S-4: Very dense, brown, fine to		ND			
10 _	1					32 26		coarse SAND, some Gravel, some					
]							Silt, dry.			SAND/GRAVEL		
_								, . -			SAND/GRAVEL		
-	†												
_	-												
_													
15 _		S-5	14-16	24	14	18 22	51	S-5: Very dense, brown, fine to		ND			
13 _	†					29 33		coarse GRAVEL, some fine to					
_	1							coarse Sand, little (-) Silt, dry.					
_	1												
-	1												
_	-		10.01		44	40.00	40	C C: D h f t		ND			
20 _		S-6	19-21	24	14	13 23	70	S-6: Dense, brown, fine to coarse		IND			
						17 16		SAND and GRAVEL, trace Silt.			21'	243.0'	
-	1							Bottom of boring at 21 feet.	3		21	243.0	
-	-							G					
_	1												
-	1												
25 _	-												
_													
-	1												
-	1												
_	1												
30													
1.								on an AutoCAD .dwg file titled "CFS Compos					
S	organic	vapor m	neter equip	ped wit	th a pho	otoionization de	etector (I	nced to a benzene standard, measured in the PID) and 10.6eV lamp. Results in parts per n	head nillion	space of by volui	t sealed soil sample j ne (ppmv). ND indica	ars usino ates noth	g a Ion Science Phocheck Tiger ning detected (<0.1 ppmv).
REMARK 3.						drill cuttings to				-			- , , , ,
ĕ∣													
-													
Sec la	a kov for	ovolon	ation of a	mple	doscrin	tions and id-	tification	procedures Stratification lines represent	nnra	imata h	oundaries between	oil and	Don't M
								procedures. Stratification lines represent a ngs have been made at the times and und					Boring No.:
ground	dwater ma	y occur	due to oth	er facto	ors than	those present	at the ti	mes the measurements were made.					GZ-9

GeoEnvironmental, Inc. Engineers and Scientists

Commonwealth Fusion Systems **Proposed Development** Hospital Road Devens, Massachusetts

BORING NO.: GZ-15 (OW) SHEET: 1 of 2 PROJECT NO: 01.0174955.20 REVIEWED BY: MJO

Type of Rig: Drilling Co.: New England Boring Contractors

Foreman: Walter Hoeckele Logged By: D. Walsh

ATV Rig Model: Mobile B-53

Drilling Method: HSA

Boring Location: See Plan Ground Surface Elev. (ft.): 266 Final Boring Depth (ft.): 51

Date Start - Finish: 11/5/2024 - 11/6/2024

H. Datum: See Plan V. Datum: NAVD88

Auger/Casing Type: HSA I.D./O.D.(in): 2.25/6 Hmr Weight (lb.): Hmr Fall (in.): Other:

Sampler Type: Split Spoon I.D./O.D (in.): 1.375/2 Sampler Hmr Wt (lb): 140 Sampler Hmr Fall (in): 30 Autohammer

Groundwater Depth (ft.) Date Time Water Depth Casing Stab. Time 11/6/24 0940 35 44 25 min. 11/21/24 15 days 0948 35.8 Well

	Casing			Samp	le	I			돈	Field	_ Stratum		Equipment Installed
Depth (ft)	Blows/ Core Rate Min/ft	No.	Depth (ft.)			Blows (per 6 in.)	SPT Value	Sample Description Modified Burmister	Remark	Test		(#)	4" Standpipe
-	WIIIVIL	S-1 S-2	0-2	24	15	3 12 15 14 23 36	27 66	S-1: S-1: (Top 2") Dark brown, fine to coarse SAND, some Gravel, little (+) Silt, trace (-) Roots, dry. S-1: (Bottom 13") Light brown, fine to	1 2	3 ppm Q. ND 1 ppm 2.	FILL	265.8	Concrete (0-1')
-		0-2	2 1	24	10	30 25		medium SAND, some Gravel, some Silt, trace (-) Roots, dry. S-2: S-2: (Top 4") Light brown, fine to		ND			
5 _		S-3	4-6	24	196	22 20 18 22	38	medium SAND, some Gravel, some Silt, trace (-) Roots.					
_		S-4	6-8	24	6	7 13 13 13	26	(Bottom 12") Very dense, light brown, fine to coarse SAND and GRAVEL, little Silt, trace (-) Roots. S-3: S-3: (Top 9") Gray, fine to coarse	3		CANDICDAVE		
10		S-5	8-10	24	<1"	11 13 9 11	22	SAND and GRAVEL, some Silt, trace (-) Roots, trace (-) Plastic. S-3: (Bottom 10") Brown, fine to			SAND/GRAVEL	-	2" PVC Riser (1-30')
-		S-6	10-12	24	10	13 13 12 12	25	coarse SAND and GRAVEL, trace Silt. S-4: S-4: Medium dense, brown, fine to coarse SAND, some Gravel, trace Silt.					Soil Cuttings
- 15 _		S-7	14-16	24	8	4 5 5 6	10	S-5: S-5: Pieces of metal in spoon. S-6: S-6: Medium dense, brown, fine to coarse SAND and GRAVEL, little Silt. S-7: S-7: Medium dense, brown, fine to medium SAND, trace Silt.		13	3'	_253.0	(1-22.3')
-		S-8	16-18	24	11	8 7 8 7	15	S-8: S-8: Medium dense, brown, fine to medium SAND, little Gravel, trace Silt, trace Steel Nails.					
20		S-9	18-20	24	11	4 6 7 9	13	S-9: S-9: Medium dense, brown, fine to medium SAND, trace Silt.					
-											SAND		
25		S-10	24-26	24	10	6 9 10 12	19	S-10: S-10: Medium dense, brown with occasional orange, fine SAND, trace Silt.					■—Bentonite (22.3-25.4')
30		S-11	29-31	24	11	9 14	30	S-11: S-11: Dense, brown, fine SAND,					✓-Sand (25.4-30')

1. Ground surface elevation estimated from topography depicted on an AutoCAD .dwg file titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16, 2024. Offset approximately 9 Ground surface elevation estimated from topography depicted on an AutoCAD. owg file titled "C-Ps Composite Existing Surface -polylines," transmitted to GZA on September 19, 2024. Unset approximately feet south due to trees at staked location.
 Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a lon Science Phocheck Tiger organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmy). ND indicates nothing detected (-0.1 ppmy).
 Driller indicated that pieces of concrete and/or steel noted in wash and/or samples from 6 to 10 and 16 to 18 feet below ground surface (bgs) were from an obstruction pushed from the fill stratum above.

REMARKS

174955.20 COMM FUSIONS.GPJ; STANDARD BORING W/E W/O SMP 2PG2; 9/23/2025

See log key for explanation of sample descriptions and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made

Boring No.: GZ-15 (OW)

GZA GeoEnvironmental, Inc. Engineers and Scientists Commonwealth Fusion Systems Proposed Development Hospital Road Devens, Massachusetts

BORING NO.: GZ-15 (OW) SHEET: 2 of 2 PROJECT NO: 01.0174955.20 REVIEWED BY: MJO

Depth	Casing Blows/		,	Samp	le			Communic Documention	ark	Field	_ Stratum	
(ft)	Core Rate Min/ft	No.	Depth (ft.)	Pen. (in)	Rec. (in)		SPT Value		Remark	Test Data	Stratum Stratum Stratum Stratum	Equipment Installe
35		S-12	34-36	24	17	3 23 17 17	40	S-12: S-12: (Top 9") Gray, CLAY & SILT, trace fine Sand. S-12: (Bottom 8") Brown with orange staining, GRAVEL and fine to coarse			SAND	
40 _		S-13	38-40	24	17	12 11 11 16	22	SAND, some Silt. S-13: S-13: Medium dense, brown, fine to coarse SAND and GRAVEL, little Silt.			SAND/GRAVEL	2" PVC Scree (30-45')
- 45 _ -		S-14	44-46	24	16	7 9 12 13	21	S-14: S-14: Medium dense, brown with occasional orange staining, fine to coarse SAND, trace Silt.			42.5'	
50 _ _		S-15	49-51	24	10	20 17 20 29	37	S-15: S-15: Dense, brown with orange staining, fine to coarse SAND and GRAVEL, little (+) Silt. Bottom of boring at 51 feet.	4		47.5' 218.5' GLACIAL TILL	
55 _ _												
60 _												
65 _												
REMARKS 4.	Installed	monitorin	g well in bo	l vrehole u	l Ipon coi	l mpletion.	I			I		
ypes. A	Actual tra	ansitions	may be gr	adual.	Water	level readings l	have be	cedures. Stratification lines represent approxion made at the times and under the condition nts were made.				Boring No.: GZ-15 (OW)

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 T: 781.278.3700 F: 781.278.5701 F: 781.278.5702 www.gza.com

APPENDIX B.6

2025 GZA TEST PIT LOGS

		TEST I	PIT LOG				
C.T.	Pivot	TEST PIT NO.:	TP-306				
GZA GeoEnvironmental, Inc.	Proposed	CFS-3 Develop	SHEET:	1 of 1			
Engineers/Scientists	Ho	ospital Road				PROJECT NO:	01.0178186.00
	Devens	, Massachuset	ts			REVIEWED BY:	MJO
-							
GZA Rep. Kyran Peters	Contractor	Cryan Land	scaping Contra	actors, Inc.		Date	8/5/2025
	Operator	Hassler Lop	ez			Ground Elev.	267
Weather 70's, Overcast	Make	CAT	Model	311FLRR		Time Started	0945
	Capacity	1/3 CY	Reach	14	ft.	Time Completed	1020
		•				Boulders:	

Depth (ft)	Soil Description (Stratum Description-USDA Field Determination)	Sample No.	Field Test Data	Excav. Effort	Boulders: Count/ Class	Note No.
1	Light brown, fine to coarse SAND, some fine to coarse Gravel, little Silt, trace Roots, dry.	GS-1	ND	E	0	1, 2
2	(TOPSOIL - USDA LOAMY SAND)	1		М	0	
3	Brown, fine to coarse SAND and fine to coarse Gravel, trace Silt, dry. (SAND/GRAVEL or Possible FILL - USDA LOAMY SAND)	GS-2	ND	D	1B	
4				D	1A	
5				М	0	
6				М	0	
7				М	0	
8				М	0	
9	Brown, fine to coarse SAND, some fine to coarse Gravel, trace (-) Silt, moist. (SAND/GRAVEL - USDA SAND)			E	0	
10				E	0	
11				E	0	
12				E	0	
13				E	0	3,4
14	Bottom of Test Pit 13'					
15						
16						

- 1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16, 2024.
- 2. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a lon Science Phocheck Tiger organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).
- 3. Test pit terminated at 13 feet bgs due to cave ins.
- 4. Test pit backfilled with excavated spoils placed in approximately 1-foot-thich lifts each tamped with the excavator bucket.

Test Pit Plan	Bould	der Class	Propo	rtions Used	F = Abbreviations		Groundwater
	Letter	Size Range			M = Medium		() Encountered
11	Designation	Classification	TRACE (TR.)	0 - 10%	C = Coarse		(X) Not Encountered
4	А	6" - 17"	LITTLE (LI.)	10 - 20%	V = Very F/M = Fine to	Elapsed Time to	Depth to
NORTH	В	18" - 36"	SOME (SO.)	20 - 35%	medium	Reading	Ground water
†	С	36" and Larger	AND	35 - 50%	F/C = Fine to coarse GR = Grav	(Hours)	
Volume = 11 cu. yd.		Excav	ation Effort		BN = Brown		
		E - Easy M - M	loderate D - Di	fficult	YEL = Yellow		

_		TEST	PIT LOG			
- an	Pivot	TEST PIT NO.:	TP-307			
GZA GeoEnvironmental, Inc.	Proposed	SHEET:	1 of 1			
Engineers/Scientists	Н	ospital Road	PROJECT NO:	01.0178186.00		
	Devens	, Massachuse	REVIEWED BY:	MJO		
						-
GZA Rep. Kyran Peters	Contractor	Cryan Land	scaping Contra	actors, Inc.	Date	8/6/2025
' <u>'</u>	Operator	Hassler Lop	ez		Ground Elev.	269
Weather 70's, Overcast	Make	CAT	Model	311FLRR	Time Started	1310
' <u>'</u>	Capacity	1/3 CY	Reach	14	ft. Time Completed	1385

Depth (ft)	Soil Description (Stratum Description-USDA Field Determination)	Sample No.	Field Test Data	Excav. Effort	Boulders: Count/ Class	Note No.
0.5 1	Dark brown, fine to coarse SAND, some fine to coarse Gravel, little (+) Silt, trace Roots, dry. (TOPSOIL - USDA SANDY LOAM)	GS-1	ND	E	0	1, 2
2	Light brown, fine to coarse SAND, little fine to coarse Gravel, trace (-) Silt, trace Roots, dry. (SAND - USDA SAND)	GS-2	ND	E	0	
3	Brown, fine to coarse GRAVEL and fine to coarse SAND, trace (-) Silt, dry. (SAND/GRAVEL - USDA SAND)	GS-3	ND	E	0	
4				E	0	
5				E	0	
6				E	0	
7	Brown, fine to coarse SAND and fine to coarse GRAVEL, trace (-) Silt, dry. (SAND/GRAVEL - USDA SAND)			E	0	
8		GS-4	ND	E	0	3,4
9	Bottom of Test Pit 8'					
10						
11						
12						
13						
14						
15						
16						

- 1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16, 2024.
- 2. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a lon Science Phocheck Tiger organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).
- 3. Test pit terminated at 8 feet bgs due to cave ins.
- 4. Test pit backfilled with excavated spoils placed in approximately 1-foot-thich lifts each tamped with the excavator bucket.

Test Pit Plan	Bould	der Class	Prop	ortions Used	F = Abbreviations	Groundwater		
	Letter	Size Range			M = Medium	() Encountered	
11	Designation	Classification	TRACE (TR.)	0 - 10%	C = Coarse	(x) Not Encountered	
4	Α	6" - 17"	LITTLE (LI.)	10 - 20%	V = Very F/M = Fine to	Elapsed Time to	Depth to	
NORTH	В	18" - 36"	SOME (SO.)	20 - 35%	medium	Reading	Ground water	
	С	36" and Larger	AND	35 - 50%	F/C = Fine to coarse GR = Gray	(Hours)		
Volume = 7 cu. yd.		Excav	ation Effort		BN = Brown YEL = Yellow			
		E - Easy M - M	loderate D - D	ifficult	TEL = TEIIOW			

		TEST	PIT LOG				
G	Pivot	TEST PIT NO.:	TP-308				
GZA GeoEnvironmental, Inc.	Proposed	CFS-3 Develop		SHEET:	1 of 1		
Engineers/Scientists	Ho	ospital Road	PROJECT NO:	01.0178186.00			
	Devens	, Massachuse	REVIEWED BY:	MJO			
GZA Rep. Kyran Peters	Contractor	Cryan Land	scaping Contra	actors, Inc.		Date	8/5/2025
	Operator	Hassler Lop	ez			Ground Elev.	268.5
Weather 70's, Overcast	Make	CAT	Model	311FLRR		Time Started	0845
	Capacity	1/3 CY	Reach	14	ft.	Time Completed	0925

Depth (ft)	Soil Description (Stratum Description-USDA Field Determination)	Sample No.	Field Test Data	Excav. Effort	Boulders: Count/ Class	Note No.
1	Dark brown, fine to coarse SAND, some fine to coarse Gravel, little (+) Silt, trace Roots, moist. (TOPSOIL - USDA SANDY LOAM)	GS-1	ND	E	0	1, 2
2				E	1A	
3	Brown, fine to coarse SAND and fine to coarse GRAVEL, trace Silt, moist.	GS-2	ND	E	1A	
4	(SAND/GRAVEL or Possible FILL - USDA LOAMY SAND)			E	1A	
5				E	0	
6				E	0	
7				E	1A	
8			ND	E	0	
9	Brown, fine to coarse SAND and fine to coarse GRAVEL, trace (-) Silt, moist. (SAND/GRAVEL - USDA SAND)			E	0	
10				E	0	
11				E	0	
12				E	0	
13	Brown, fine to coarse GRAVEL and medium SAND, trace (-) Silt, moist. (SAND/GRAVEL - USDA Gradation Determination: SAND)	GS-3	ND	E	0	3,4
14	Bottom of Test Pit 13'					
15						
16						

- 1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16, 2024.
- 2. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a Ion Science Phocheck Tiger organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).
- 3. Test pit terminated at 13 feet bgs due to cave in.
- 4. Test pit backfilled with excavated spoils placed in approximately 1-foot-thick lifts each tamped with the excavator bucket.

Test Pit Plan	Bould	ler Class		Proportions Used	F = Abbreviations	Gro	undwater
	Letter	Size Range			M = Medium	()	Encountered
12	Designation	Classification	TRACE (TR.)	0 - 10%	C = Coarse	(x)	Not Encountered
4	Α	6" - 17"	LITTLE (LI.)	10 - 20%	V = Very F/M = Fine to	Elapsed Time to	Depth to
NORTH	В	18" - 36"	SOME (SO.)	20 - 35%	medium	Reading	Ground water
	С	36" and Larger	AND	35 - 50%	F/C = Fine to coarse GR = Gray	(Hours)	
Volume = 12 cu. yd.		Excav	ation Effort		BN = Brown		
		E - Easy M - M	oderate	D - Difficult	YEL = Yellow		

		TEST F	PIT LOG				
- C7A	Commonwe	ealth Fusion Sy	rstems			TEST PIT NO.:	TP-309
GZA GeoEnvironmental, Inc.	Proposed (CFS-4 Develop	ment			SHEET:	1 of 1
Engineers/Scientists	Но	spital Road				PROJECT NO:	01.0174955.30
	Devens	, Massachuset	ts			REVIEWED BY:	MJO
							-
GZA Rep. Kyran Peters	Contractor	Cryan Lands	scaping Contra	actors, Inc.		Date	8/4/2025
	Operator	Hassler Lop	ez			Ground Elev.	276
Weather 80's, Sunny	Make	CAT	Model	311FLRR		Time Started	1247
	Capacity	1/3 CY	Reach	14	ft.	Time Completed	1320

Depth (ft)	Soil Description (Stratum Description-USDA Field Determination)	Sample No.	Field Test Data	Excav. Effort	Boulders: Count/ Class	Note No.
1				E	0	1, 2
2	Moist, dark brown, fine to coarse SAND, some fine to coarse Gravel, some Silt, trace Roots,			E	0	
3	trace Wood.			E	0	
4	(TOPSOIL FILL)	GS-1	1	E	0	
5				E	0	
6				E	0	
7				E	0	
8				E	0	
9				E	0	
10				E	1A	
11				E	0	
12				E	0	
13	Moist, brown, fine to coarse SAND and fine to coarse GRAVEL, trace Silt.	GS-2	ND	E	0	
14	(SAND/GRAVEL - USDA LOAMY SAND)			E	1A	3,4
15	Bottom of test pit 14 feet bgs					
16						

- 1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16, 2024.
- 2. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a Ion Science Phocheck Tiger organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).
- 3. Test pit terminated at 14' bgs at limit of excavator reach.
- 4. Test pit backfilled with excavated spoils placed in approximately 1-foot-thick lifts each tamped with the excavator bucket.

Test Pit Plan	Boulde	er Class	Propo	rtions Used	F = Abbreviations	Gro	undwater
	Letter	Size Range			M = Medium	() Encountered
10	Designation	Classification	TRACE (TR.)	0 - 10%	C = Coarse	(x	Not Encountered
4	Α	6" - 17"	LITTLE (LI.)	10 - 20%	V = Very F/M = Fine to	Elapsed Time to	Depth to
NORTH	В	18" - 36"	SOME (SO.)	20 - 35%	medium	Reading	Ground water
<i>†</i>	С	36" and Larger	AND	35 - 50%	F/C = Fine to coarse GR = Gray	(Hours)	
Volume = tou. yd.		Excav	ation Effort		BN = Brown		
	E - Easy M - Moderate D - Difficult			YEL = Yellow			

		TEST I	PIT LOG				
3 271	Commonwe	ealth Fusion Sy	rstems			TEST PIT NO.:	TP-310
GZA GeoEnvironmental, Inc.	Proposed	CFS-4 Develop	ment			SHEET:	1 of 1
Engineers/Scientists	Но	ospital Road				PROJECT NO:	01.0174955.30
	Devens	, Massachuset	REVIEWED BY:	MJO			
GZA Rep. Kyran Peters	Contractor	Cryan Land:	scaping Contra	actors, Inc.		Date	8/4/2025
	Operator	Hassler Lop	ez			Ground Elev.	273.5
Weather 80's, Sunny	Make	CAT	Model	311FLRR		Time Started	1218
·	Capacity	1/3 CY	Reach	14	ft.	Time Completed	1242

Depth (ft)	Soil Description (Stratum Description-USDA Field Determination)	Sample No.	Field Test Data	Excav. Effort	Boulders: Count/ Class	Note No.
1				E	0	1, 2
2	Moist, dark brown, fine to coarse SAND, some fine to coarse Gravel, some Silt,			E	0	
3	trace Roots, trace Wood.			E	0	
4	(TOPSOIL FILL)	GS-1	1	E	0	
5				Е	0	
6				E	0	
7				E	0	
8				E	0	
9				E	0	
10				E	0	
11				E	1A	
12				E	0	
13				E	1A	
14		GS-2	1	E	0	3,4
15	Bottom of test pit 14' bgs.					
16						

- 1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16, 2024.
- 2. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a lon Science Phocheck Tiger organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).
- 3. Test pit terminated at 14' bgs at limit of excavator reach.
- 4. Test pit backfilled with excavated spoils placed in approximately 1-foot-thick lifts each tamped with the excavator bucket.

Test Pit Plan	Bould	er Class	F	Proportions Used	F = Abbreviations	Gro	undwater
	Letter	Size Range			M = Medium	()	Encountered
10	Designation	Classification	TRACE (TR.)	0 - 10%	C = Coarse	(x)	Not Encountered
4	Α	6" - 17"	LITTLE (LI.)	10 - 20%	V = Very F/M = Fine to	Elapsed Time to	Depth to
NORTH	В	18" - 36"	SOME (SO.)	20 - 35%	medium	Reading	Ground water
─	С	36" and Larger	AND	35 - 50%	F/C = Fine to coarse GR = Gray	(Hours)	
Volume = 10 cu. yd.		Excav	ation Effort		BN = Brown		
		E - Easy M - M	oderate	D - Difficult	YEL = Yellow		

		TEST F	PIT LOG				
	Commonwe	ealth Fusion Sy	/stems			TEST PIT NO.:	TP-311
GZA GeoEnvironmental, Inc.	Proposed (CFS-4 Develop	ment			SHEET:	1 of 1
Engineers/Scientists	Ho	spital Road				01.0174955.30	
Devens, Massachusetts						MJO	
GZA Rep. Kyran Peters	Contractor	Cryan Land	scaping Contr	actors, Inc.		Date	8/04/25
-	Operator	Hassler Lop	ez			Ground Elev.	274
Weather 70's, Sunny	Make	CAT	Model	311FLRR		Time Started	1146
	Capacity	1/3 CY	Reach	14	ft.	Time Completed	1215

Depth (ft)	Soil Description (Stratum Description-USDA Field Determination)	Sample No.	Field Test Data	Excav. Effort	Boulders: Count/ Class	Note No.
1				E	0	1, 2
2				Е	0	
3	Moist, dark brown, fine to coarse SAND, some fine to coarse Gravel, some Silt, trace Roots, trace Wood.			E	0	
4	(TOPSOIL FILL)	GS-1	1	E	0	
5				E	0	
6				E	2A	
7				E	0	
8				E	0	
9				E	0	
10				E	0	
11				E	0	
12				E	0	
13				E	0	
14		GS-2	1	E	0	3,4
15	Bottom of test pit 14' bgs.					
16						

- 1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16, 2024.
- 2. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a Ion Science Phocheck Tiger organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).
- 3. Test pit terminated at 14' bgs at limit of excavator reach.
- 4. Test pit backfilled with excavated spoils placed in approximately 1-foot-thick lifts each tamped with the excavator bucket.

Test Pit Plan	Bould	ler Class	Pro	portions Used	F = Abbreviations	Grou	undwater
	Letter	Size Range			M = Medium	()	Encountered
10	Designation	Classification	TRACE (TR.)	0 - 10%	C = Coarse	(x)	Not Encountered
4	Α	6" - 17"	LITTLE (LI.)	10 - 20%	V = Very F/M = Fine to	Elapsed Time to	Depth to
NORTH	В	18" - 36"	SOME (SO.)	20 - 35%	medium	Reading	Ground water
	С	36" and Larger	AND	35 - 50%	F/C = Fine to coarse GR = Gray	(Hours)	
Volume = 10 cu. yd.		Excav	ation Effort		BN = Brown		
		E - Easy M - M	oderate D -	YEL = Yellow			

	TEST	PIT LOG				
Commonwe	ealth Fusion Sy	/stems			TEST PIT NO.:	TP-312
Proposed	CFS-4 Develop	ment			SHEET:	1 of 1
Но	ospital Road				PROJECT NO:	01.0174955.30
Devens	, Massachuse	REVIEWED BY:	MJO			
Control	Constant land	i Ct				0/4/2025
		1 0	actors, inc.			8/4/2025 271.5
Make Capacity	CAT 1/3 CY	Model Reach	311FLRR 14	ft.	Time Started Time Completed	1115 1140
	Proposed Ho Devens Contractor Operator Make	Commonwealth Fusion Sy Proposed CFS-4 Develop Hospital Road Devens, Massachuser Contractor Cryan Land Operator Hassler Lop Make CAT	Contractor Cryan Landscaping Contra Operator Hassler Lopez Make CAT Model	Commonwealth Fusion Systems Proposed CFS-4 Development Hospital Road Devens, Massachusetts Contractor Cryan Landscaping Contractors, Inc. Operator Hassler Lopez Make CAT Model 311FLRR	Commonwealth Fusion Systems Proposed CFS-4 Development Hospital Road Devens, Massachusetts Contractor Cryan Landscaping Contractors, Inc. Operator Hassler Lopez Make CAT Model 311FLRR	Commonwealth Fusion Systems Proposed CFS-4 Development Hospital Road Devens, Massachusetts Contractor Operator Hassler Lopez Make CAT Model August 11 FLRR Time Started

Depth (ft)	Soil Description (Stratum Description-USDA Field Determination)	Sample No.	Field Test Data	Excav. Effort	Boulders: Count/ Class	Note No.
1				E	0	1, 2
2	Moist, brown/dark brown, fine to coarse SAND, some fine to coarse Gravel, some			E	0	
3	Silt, trace Roots, trace Wood.	GS-1	1	E	0	
4	(TOPSOIL FILL)			E	1A	
5				E	0	
6				E	1A	
7				E	0	
				E		
8					1A	
9				E	0	
10				E	0	
11				E	0	
12				E	0	
13				E	0	
14		GS-2	ND	E	0	3,4
15	Bottom of test pit 14' bgs.					
16						

- 1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16, 2024.
- 2. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a lon Science Phocheck Tiger organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).
- 3. Test pit terminated at 14' bgs at limit at extent of excavator reach.
- 4. Test pit backfilled with excavated spoils placed in approximately 1-foot-thick lifts each tamped with the excavator bucket.

Test Pit Plan	Bould	der Class	Pr	oportions Used	F = Abbreviations	Gro	undwater
	Letter	Size Range			M = Medium	() Encountered
10	Designation	Classification	TRACE (TR.)	0 - 10%	C = Coarse	(x	Not Encountered
4	Α	6" - 17"	LITTLE (LI.)	10 - 20%	V = Very F/M = Fine to	Elapsed Time to	Depth to
NORTH	В	18" - 36"	SOME (SO.)	20 - 35%	medium	Reading	Ground water
	С	36" and Larger	AND	35 - 50%	F/C = Fine to coarse GR = Gray	(Hours)	
Volume = 10 cu. yd.		Excav	ation Effort		BN = Brown		
	E - Easy M - Moderate D - Difficult				YEL = Yellow		

		TEST	PIT LOG					
O. C.	Commonwe	ealth Fusion Sy	/stems			TEST PIT I	NO.:	TP-313
GZA GeoEnvironmental, Inc.	Proposed	CFS-4 Develop	ment		_	SHEET:		1 of 1
Engineers/Scientists	Ho	ospital Road			_	PROJECT	01.0174955.30	
	Devens, Massachusetts						D BY:	MJO
GZA Rep. Kyran Peters	Contractor	Cryan Land	scaping Contra	actors, Inc.		Date		8/4/2025
	Operator	Hassler Lop	ez	·	Ground Elev.			278
Weather 70's, Sunny	Make	CAT	Model	311FLRR		Time Started		1032
	Capacity	1/3 CY	Reach	14	ft.	Time Con	npleted	1105
Denth	Soil Description			Sample	Field Test	Fxcav	Boulders:	

Depth (ft)	Soil Description (Stratum Description-USDA Field Determination)	Sample No.	Field Test Data	Excav. Effort	Boulders: Count/ Class	Note No.
1				E	0	1, 2
2	Majet hypur fine to see see CAND come fine to see see Croud come Cit tures	GS-1	ND	E	0	
3	Moist, brown, fine to coarse SAND, some fine to coarse Gravel, some Silt, trace Roots, trace Wood.			E	2A	
4	(TOPSOIL FILL)			E	0	
5				E	2A	
6				E	0	
7				E	0	
8				E	0	
9				E	0	
10				E	0	
11				E	0	
12				E	0	
13		GS-2	ND	E	0	
14				E	0	3,4
15	Bottom of test pit 14' bgs.					
16						

- 1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16, 2024.
- 2. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a Ion Science Phocheck Tiger organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).
- 3. Test pit terminated at 14' bgs at limit at extent of excavator reach.
- 4. Test pit backfilled with excavated spoils placed in approximately 1-foot-thick lifts each tamped with the excavator bucket.

Test Pit Plan	Bould	ler Class	Pro	oportions Used	F = Fine	Gro	undwater
	Letter	Size Range			M = Medium	()	Encountered
10	Designation	Classification	TRACE (TR.)	0 - 10%	C = Coarse	(x)	Not Encountered
4	Α	6" - 17"	LITTLE (LI.)	10 - 20%	V = Very F/M = Fine to	Elapsed Time to	Depth to
NORTH	В	18" - 36"	SOME (SO.)	20 - 35%		Reading	Ground water
•	С	36" and Larger	AND	35 - 50%	F/C = Fine to coarse GR = Gray	(Hours)	
Volume = 10 cu. yd.		Excav	ation Effort		BN = Brown		
		E - Easy M - M	loderate D	- Difficult	YEL = Yellow		

Stratification lines represent approximate boundaries between soil types, transitions may be gradual. Water level readings have been made at times and under conditions

		TEST	PIT LOG				
G7.	Commonwe	ealth Fusion Sy	/stems			TEST PIT NO.:	TP-314
GZA GeoEnvironmental, Inc.	Proposed	CFS-4 Develop	ment			SHEET:	1 of 1
Engineers/Scientists	Ho	ospital Road				PROJECT NO:	01.0174955.30
Devens, Massachusetts				REVIEWED BY:	MJO		
CZA Dam. Kuran Dators	Courtmanton	Cruan Land	scaning Contra	actors Inc		D-4-	8/4/2025
GZA Rep. Kyran Peters	Contractor Operator	Hassler Lop	scaping Contra	actors, inc.		Date Ground Elev.	278
Weather 80's, Sunny	Make	CAT	Model	311FLRR		Time Started	1325
	Capacity	1/3 CY	Reach	14	ft.	Time Completed	1345
						Boulders:	

Depth (ft)	Soil Description (Stratum Description-USDA Field Determination)	Sample No.	Field Test Data	Excav. Effort	Boulders: Count/ Class	Note No.
1				E	0	1, 2
2	Moist, dark brown, fine to coarse SAND, some fine to coarse Gravel, some Silt,			E	0	
3	trace Roots, trace Wood.			E	0	
4	(TOPSOIL FILL)	GS-1	1	E	0	
5				E	0	
6				E	1A	
7				E	0	
8				E	0	
9				E	0	
10				E	0	
11				E	1A	
12				Е	0	
13				E	0	
14		GS-2	ND	E	0	3,4
15	Bottom of test pit 14' bgs.					
16						

- 1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16, 2024.
- 2. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a Ion Science Phocheck Tiger organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).
- 3. Test pit terminated at 14' bgs at limit at extent of excavator reach.
- 4. Test pit backfilled with excavated spoils placed in approximately 1-foot-thick lifts each tamped with the excavator bucket.

Test Pit Plan	Bould	er Class	P	roportions Used	F = Fine	Gro	undwater
	Letter	Size Range			M = Medium	()	Encountered
10	Designation	Classification	TRACE (TR.)	0 - 10%	C = Coarse V = Verv	(x)	Not Encountered
4	Α	6" - 17"	LITTLE (LI.)	10 - 20%	F/M = Fine to	Elapsed Time to	Depth to
NORTH	В	18" - 36"	SOME (SO.)	20 - 35%	medium	Reading	Ground water
→	С	36" and Larger	AND	35 - 50%	F/C = Fine to coarse GR = Gray	(Hours)	
Volume = <u>10</u> cu. yd.		Excav	ation Effort		BN = Brown		
		E - Easy M - M	oderate D) - Difficult	YEL = Yellow		

Stratification lines represent approximate boundaries between soil types, transitions may be gradual. Water level readings have been made at times and under conditions

		TEST P	IT LOG				
	Commonwe	ealth Fusion Sy	stems			TEST PIT NO.:	TP-315
GZA GeoEnvironmental, Inc.	Proposed (CFS-4 Develop	ment			SHEET:	1 of 1
Engineers/Scientists	Но	ospital Road				PROJECT NO:	01.0174955.30
Devens, Massachusetts					REVIEWED BY:	MJO	
GZA Rep. Kyran Peters	Contractor	Cryan Lands	scaping Contr	actors, Inc.		Date	8/6/2025
• -	Operator	Hassler Lop	ez	· · · · · · · · · · · · · · · · · · ·		Ground Elev.	272.5
Weather 70's, Overcast	Make	CAT	Model	311FLRR		Time Started	1352
	Capacity	1/3 CY	Reach	14	ft.	Time Completed	1410
			_				

Depth (ft)	Soil Description (Stratum Description-USDA Field Determination)	Sample No.	Field Test Data	Excav. Effort	Boulders: Count/ Class	Note No.
1	Brown/dark brown, fine to coarse SAND, some fine to coarse Gravel, little (+) Silt, trace Roots, dry.	GS-1	ND	E	0	1, 2
2	(TOPSOIL)		ND	E	2A	
3		GS-2		Е	0	
4				E	0	
5	Brown, fine to coarse SAND and fine to coarse GRAVEL, trace (-) Silt.			E	0	
6	(SAND/GRAVEL - USDA SAND)			E	0	
7				E	0	
8				E	0	3
9	Bottom of Test Pit 8'					
10						
11						
12						
13						
14						
15 16						

- 1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16, 2024.
- 2. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a Ion Science Phocheck Tiger organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).
- 3. Test pit terminated at 8 feet bgs upon reaching target depth.
- 5. Test pit backfilled with excavated spoils placed in approximately 1-foot-thick lifts each tamped with the excavator bucket.

Test Pit Plan	Bould	ler Class	Propo	rtions Used	F = Abbreviations	Gı	roundwater
	Letter	Size Range			M = Medium	() Encountered
10	Designation	Classification	TRACE (TR.)	0 - 10%	C = Coarse	(:	x) Not Encountered
4	Α	6" - 17"	LITTLE (LI.)	10 - 20%	V = Very F/M = Fine to	Elapsed Time to	Depth to
NORTH	В	18" - 36"	SOME (SO.)	20 - 35%	medium	Reading	Ground water
*	С	36" and Larger	AND	35 - 50%	F/C = Fine to coarse GR = Gray	(Hours)	
Volume = 6 cu. yd.		Excav	ation Effort		BN = Brown		
		E - Easy M - M	loderate D - Di	fficult	YEL = Yellow		

		TEST	PIT LOG				
- ag.	Commonwe	ealth Fusion Sy	ystems			TEST PIT NO.:	TP-316
GZA GeoEnvironmental, Inc.	Proposed	CFS-4 Develop	ment			SHEET:	1 of 1
Engineers/Scientists	Но	ospital Road				PROJECT NO:	01.0174955.30
	Devens	, Massachuse	tts			REVIEWED BY:	MJO
GZA Rep. Darragh Walsh	Contractor	Cryan Land	scaping Contra	actors, Inc.		Date	8/7/2025
-	Operator	Hassler Lop	ez			Ground Elev.	275
Weather 70's-80's Sunny	Make	CAT	Model	311FLRR		Time Started	0841
	Capacity	1/3 CY	Reach	14	ft.	Time Completed	0853
						1	
	Contractor Operator Make	Cryan Land Hassler Lop CAT	scaping Contra Dez Model	311FLRR		Date Ground Elev. Time Started	8/7/2025 275 0841

Depth (ft)	Soil Description (Stratum Description-USDA Field Determination)	Sample No.	Field Test Data	Excav. Effort	Boulders: Count/ Class	Note No.
1				E	0	1, 2
2				E	0	
3	Dark brown, fine to coarse SAND, some fine to coarse Gravel, some Silt, trace Roots, damp. (TOPSOIL FILL)			E	1A	
4				E	0	
5		GS-1	ND	E	0	
6	Brown, fine to coarse SAND and fine to coarse GRAVEL, little Silt, moist. (SAND/GRAVEL)			М	0	3,4
7	Bottom of Test Pit at 6'					
8						
9						
10						
11						
12						
13						
14						
15						
16						

- 1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16, 2024.
- 2. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a lon Science Phocheck Tiger organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).
- 3. Test pit terminated at 6 feet bgs.
- 4. Test pit backfilled with excavated spoils placed in approximately 1-foot-thick lifts each tamped with the excavator bucket.

Test Pit Plan	Bould	ler Class	F	Proportions Used	F = Fine	Grou	undwater
12	Letter Designation	Size Range Classification	TRACE (TR.)	0 - 10%	M = Medium C = Coarse	` '	Encountered Not Encountered
4	A		LITTLE (LI.)	10 - 20%	F/M = Fine to	Elapsed Time to	Depth to Ground water
NORTH	B C		SOME (SO.) AND	20 - 35% 35 - 50%	medium F/C = Fine to coarse GR = Gray	Reading (Hours)	Ground water
Volume =5 cu. yd.			ation Effort		BN = Brown YEL = Yellow		
		E - Easy M - Moderate D - Difficult					

		TEST	PIT LOG				
S CAL	Commonwe	ealth Fusion Sy	/stems			TEST PIT NO.:	TP-317
GZA GeoEnvironmental, Inc.	Proposed	CFS-4 Develop	ment			SHEET:	1 of 1
Engineers/Scientists	Ho	ospital Road				PROJECT NO:	01.0174955.30
	Devens	, Massachuse	tts			REVIEWED BY:	MJO
GZA Rep. Darragh Walsh	Contractor	Cryan Land	scaping Contra	actors, Inc.		Date	8/7/2025
	Operator	Hassler Lop	ez			Ground Elev.	277
Weather 70's-80's Sunny	Make	CAT	Model	311FLRR		Time Started	0910
·	Capacity	1/3 CY	Reach	14	ft.	Time Completed	0955
							1

Depth (ft)	Soil Description (Stratum Description-USDA Field Determination)	Sample No.	Field Test Data	Excav. Effort	Boulders: Count/ Class	Note No.
1	Dark brown, fine to coarse SAND, some fine to medium Gravel, some Silt, trace Roots, damp.	GS-1	ND	E	0	1, 2
2	1.5' (TOPSOIL FILL)			Е	1A	
3	Brown, fine to coarse SAND, some fine to coarse Gravel, trace Silt (SAND/GRAVEL)			E	0	3, 4
4	Bottom of Test Pit at 3'					
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						

- 1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16, 2024.
- 2. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a lon Science Phocheck Tiger organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).
- 3. Test pit terminated at 3 feet bgs.
- 4. Test pit backfilled with excavated spoils placed in approximately 1-foot-thick lifts each tamped with the excavator bucket.

Test Pit Plan	Bould	ler Class	P	roportions Used	F = Fine	Grou	undwater
12	Letter Designation	Size Range Classification	TRACE (TR.)	0 - 10%	M = Medium C = Coarse	` '	Encountered Not Encountered
4	A		LITTLE (LI.)	10 - 20%	V = Very F/M = Fine to	Elapsed Time to	Depth to Ground water
NORTH	B C	18" - 36" 36" and Larger	SOME (SO.) AND	20 - 35% 35 - 50%	medium F/C = Fine to coarse GR = Gray	Reading (Hours)	Ground water
Volume = 3 cu. yd.	. yd. Excavation Effort		BN = Brown				
	E - Easy M - Moderate D - Difficult				YEL = Yellow		

		TEST	PIT LOG			_
- ca.	Commonwe	ealth Fusion Sy	/stems		TEST PIT NO.:	TP-318
GZA GeoEnvironmental, Inc.	Proposed	CFS-4 Develop	ment		SHEET:	1 of 1
Engineers/Scientists	Н	ospital Road			PROJECT NO:	01.0174955.30
Devens, Massachusetts					REVIEWED BY:	MJO
GZA Rep. Darragh Walsh	Contractor	Cryan Land	scaping Contra	actors, Inc.	Date	8/7/2025
	Operator	Hassler Lop	ez		Ground Elev.	279
Weather 70's-80's Sunny	Make	CAT	Model	311FLRR	Time Started	1010
	Capacity	1/3 CY	Reach	14 ft	. Time Completed	1020
<u> </u>					Pouldors	

Depth (ft)	Soil Description (Stratum Description-USDA Field Determination)	Sample No.	Field Test Data	Excav. Effort	Boulders: Count/ Class	Note No.
1	Dark brown, fine to coarse SAND, some Silt, little fine to coarse Gravel, damp. (TOPSOIL	GS-1	ND	E	0	1, 2
2	FILL)			E	0	
3	Brown, fine to coarse SAND, some fine to coarse Gravel, little Silt, moist. (SAND/GRAVEL)			Е	0	3, 4
4	Bottom of Test Pit at 3'					
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						

- 1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16, 2024.
- 2. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a lon Science Phocheck Tiger organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).
- 3. Test pit terminated at 3 feet bgs.
- 4. Test pit backfilled with excavated spoils placed in approximately 1-foot-thick lifts each tamped with the excavator bucket.

Test Pit Plan	Bould	ler Class	Proportions Used F = Alt		Class Proport		F = Fine	Gro	undwater
12	Letter Designation	Size Range Classification	TRACE (TR.)	0 - 10%	M = Medium C = Coarse	,) Encountered) Not Encountered		
4	Α	6" - 17"	LITTLE (LI.)	10 - 20%	0% V = Very Elapsed Time to		Depth to		
NORTH	В	18" - 36"	SOME (SO.)	20 - 35%	medium F/C = Fine to coarse	Reading	Ground water		
•	С	36" and Larger	AND	35 - 50%	GR = Gray	(Hours)			
Volume = 3 cu. yd.	ume = 3 cu. yd. Excavation Effort			BN = Brown					
	E - Easy M - Moderate D - Difficult				YEL = Yellow				

		TEST I	PIT LOG				
O. C.	Commonwe	ealth Fusion Sy	/stems			TEST PIT NO.:	TP-319
GZA GeoEnvironmental, Inc.	Proposed	CFS-4 Develop	ment			SHEET:	1 of 1
Engineers/Scientists	Но	ospital Road				PROJECT NO:	01.0174955.30
	Devens	, Massachuset	REVIEWED BY:	MJO			
GZA Rep. Darragh Walsh	Contractor	Cryan Land:	scaping Contra	actors, Inc.		Date	8/7/2025
·	Operator	Hassler Lop	ez			Ground Elev.	275
Weather 70's-80's Sunny	Make	CAT	Model	311FLRR		Time Started	1030
·	Capacity	1/3 CY	Reach	14	ft.	Time Completed	1042
						Pouldors	

Depth (ft)	Soil Description (Stratum Description-USDA Field Determination)	Sample No.	Field Test Data	Excav. Effort	Boulders: Count/ Class	Note No.
1		GS-1	ND	E	0	1, 2
2				Е	0	
3				E	1A	
4				Е	0	
5				E	0	
6				М	0	
7	Dark brown, fine to coarse SAND, some Silt, little fine to coarse Gravel, damp. (TOPSOIL FILL)			М	0	
8	(TOT SOLETIES)			М	2A	
9				М	0	
10				М	0	
				M	0	
11				М	0	3
12				M	0	4
13	Bottom of Test Pit at 13'					
14						
15						
16						

- 1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16, 2024.
- 2. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a lon Science Phocheck Tiger organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).
- 3. Test pit terminated at approximate practical reach limit of the excavator at 13 feet.
- 4. Test pit backfilled with excavated spoils placed in approximately 1-foot-thick lifts each tamped with the excavator bucket.

Test Pit Plan	Boulder Class		ı	Proportions Used	F = Fine	Groundwater		
12	Letter Designation	Size Range Classification	TRACE (TR.)	0 - 10%	M = Medium C = Coarse	` '	Encountered Not Encountered	
4	Α		LITTLE (LI.)	10 - 20%	F/M = Fine to	Elapsed Time to	Depth to Ground water	
NORTH	В		SOME (SO.)	20 - 35%	medium F/C = Fine to coarse	Reading (Hours)	Ground water	
<u>'</u>	С		AND	35 - 50%	GR = Gray	-	I	
Volume = <u>12</u> cu. yd.		Excav	ation Effort		BN = Brown YEL = Yellow			
		E - Easy M - Moderate D - Difficult						

		TEST	PIT LOG			
	Commonwe	ealth Fusion Sy	rstems		TEST PIT NO.:	TP-320
GZA GeoEnvironmental, Inc.	Proposed (CFS-4 Develop	ment	<u> </u>	SHEET:	1 of 1
Engineers/Scientists	Но	ospital Road			PROJECT NO:	01.0174955.30
Devens, Massachusetts					REVIEWED BY:	MJO
GZA Rep. Darragh Walsh	Contractor	Cryan Land	scaping Contra	actors, Inc.	Date	8/7/2025
	Operator	Hassler Lop	ez		Ground Elev.	259
Weather 70's-80's Sunny	Make	CAT	Model	311FLRR	Time Started	1035
	Capacity	1/3 CY	Reach	14 ft	. Time Completed	1050
				ı ı	Pauldara	<u> </u>

Depth (ft)	Soil Description (Stratum Description-USDA Field Determination)	Sample No.	Field Test Data	Excav. Effort	Boulders: Count/ Class	Note No.
1		GS-1	ND	E	0	1, 2
2	Dark brown, fine to coarse SAND, some Silt, little fine to coarse Gravel, damp. (TOPSOIL FILL)			E	0	
3				E	1A	3
4	Brown, fine to coarse SAND and fine to coarse GRAVEL, little Silt, moist. (SAND/GRAVEL)			E	0	4
5	Bottom of Test Boring at 4'					
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						

- 1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16, 2024.
- 2. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a lon Science Phocheck Tiger organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).
- 3. Test pit terminated at 4 feet bgs.
- 4. Test pit backfilled with excavated spoils placed in approximately 1-foot-thick lifts each tamped with the excavator bucket.

Test Pit Plan	Bould	ler Class	Pro	portions Used	F = Fine	Gro	undwater
12	Letter Designation			TRACE (TR.) 0 - 10%		((x) Encountered) Not Encountered
4	Α	6" - 17"	LITTLE (LI.)	10 - 20%	V = Very F/M = Fine to	Elapsed Time to	Depth to Ground water
NORTH	В	18" - 36"	SOME (SO.)	20 - 35%	medium	Reading	
~	С	36" and Larger	AND	35 - 50%	F/C = Fine to coarse GR = Gray	(Hours)	
Volume = 4 cu. yd.	= 4 cu. yd. Excavation Effort E - Easy M - Moderate D - Difficult				BN = Brown		
				Difficult	YEL = Yellow		

		TEST	PIT LOG				
OTA	Commonwe	ealth Fusion Sy	TEST PIT NO.:	TP-321			
GZA GeoEnvironmental, Inc.	Proposed (CFS-4 Develop	ment			SHEET:	1 of 1
Engineers/Scientists	Но	ospital Road				PROJECT NO:	01.0174955.30
	, Massachuse	tts			REVIEWED BY:	MJO	
				-			
GZA Rep. Darragh Walsh	Contractor	Cryan Land	scaping Contra	actors, Inc.		Date	8/7/2025
	Operator	Hassler Lop	ez			Ground Elev.	266
Weather 70's-80's Sunny	Make	CAT	Model	311FLRR		Time Started	1115
	Capacity	1/3 CY	Reach	14	ft.	Time Completed	1137

Depth (ft)	Soil Description (Stratum Description-USDA Field Determination)	Sample No.	Field Test Data	Excav. Effort	Boulders: Count/ Class	Note No.
1		GS-1	ND	Е	0	1, 2
2				Е	0	
3				Е	0	
4				Е	1A	
5				E	0	
6				E	0	
7	Dark brown, fine to coarse SAND and fine to coarse GRAVEL, some Silt, damp. (TOPSOIL FILL)			E	0	
8	(TOT SOLETIES)			М	0	
9				М	1A	
10				М	0	
11				М	0	
12				М	0	3
13				М	0	4
15	Bottom of Test Pit at 13 feet					
14						
15						
16						

- 1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16, 2024.
- 2. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a lon Science Phocheck Tiger organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).
- 3. Test pit terminated at approximate practical reach limit of the excavator at 13 feet.
- 4. Test pit backfilled with excavated spoils placed in approximately 1-foot-thick lifts each tamped with the excavator bucket.

Test Pit Plan	Bould	ler Class	Prop	ortions Used	F = Abbreviations	Groundwater			
12 4 NORTH	Letter Designation A B		TRACE (TR.) LITTLE (LI.) SOME (SO.)	0 - 10% 10 - 20% 20 - 35% 35 - 50%	M = Medium C = Coarse V = Very F/M = Fine to medium F/C = Fine to coarse	(x) Elapsed Time to Reading (Hours)	Encountered Not Encountered Depth to Ground water		
Volume = 12 cu. yd.	C	Excav	ation Effort	Difficult	GR = Gray BN = Brown YEL = Yellow				

		TEST I	PIT LOG				
3 agu	Commonwe	ealth Fusion S	ystems			TEST PIT NO.:	TP-322
GZA GeoEnvironmental, Inc.	Proposed (CFS-4 Develop	ment			SHEET:	1 of 1
Engineers/Scientists	Но	spital Road				PROJECT NO:	01.0174955.30
	Devens	, Massachuse	tts			REVIEWED BY:	MJO
GZA Rep. Darragh Walsh	Contractor	Cryan Land	scaping Contr	actors, Inc.		Date	8/7/2025
-	Operator	Hassler Lop	pez			Ground Elev.	253.5
Weather 70's-80's Sunny	Make	CAT	Model	311FLRR		Time Started	1140
·	Capacity	1/3 CY	Reach	14	ft.	Time Completed	1147
1				, , , , , , , , , , , , , , , , , , ,		1	1

Depth (ft)	Soil Description (Stratum Description-USDA Field Determination)	Sample No.	Field Test Data	Excav. Effort	Boulders: Count/ Class	Note No.
1		GS-1	ND	E	0	1, 2
2				E	1A	
3				E	0	
4	Dark brown, fine to coarse SAND and fine to coarse GRAVEL, some Silt, trace Roots, damp.			E	0	
5	(TOPSOIL FILL)			E	1A	
6				E	0	
7				E	2A	
8				М	0	
9	Brown, fine to coarse SAND, some fine to coarse Gravel, trace Silt, moist.			М	0	
10	(SAND/GRAVEL)			М	0	3, 4
11	Bottom of Test Pit at 10 feet					
12						
13						
14						
15						
16						

- 1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16, 2024.
- 2. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a lon Science Phocheck Tiger organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).
- 3. Test pit terminated at 10 feet bgs.
- 4. Test pit backfilled with excavated spoils placed in approximately 1-foot-thick lifts each tamped with the excavator bucket.

Test Pit Plan	Bould	ler Class	Prope	ortions Used	F = Abbreviations	Grou	undwater
12	Letter Designation	Size Range Classification	TRACE (TR.)	0 - 10%	M = Medium C = Coarse V = Very	(x)	Encountered Not Encountered
4NORTH	A B		LITTLE (LI.) SOME (SO.)	10 - 20% 20 - 35%	F/M = Fine to medium	Elapsed Time to Reading	Depth to Ground water
←	С	36" and Larger	AND	35 - 50%	F/C = Fine to coarse GR = Gray	(Hours)	
Volume = 9 cu. yd.		Excav	ation Effort		BN = Brown		
		E - Easy M - M	oderate D - D	ifficult	YEL = Yellow		

		TEST I	PIT LOG				
	Commonwe	ealth Fusion Sy	rstems			TEST PIT NO.:	TP-323
GZA GeoEnvironmental, Inc.	Proposed (CFS-4 Develop	ment			SHEET:	1 of 1
Engineers/Scientists	Но	ospital Road				PROJECT NO:	01.0174955.30
	Devens	, Massachuset	ts			REVIEWED BY:	MJO
GZA Rep. Darragh Walsh	Contractor	Cryan Land	scaping Contra	ictors, Inc.		Date	8/7/2025
	Operator	Hassler Lop	ez			Ground Elev.	270.5
Weather 70's-80's Sunny	Make	CAT	Model	311FLRR		Time Started	1245
·	Capacity	1/3 CY	Reach	14	ft.	Time Completed	1300
						, , , , , , , , , , , , , , , , , , , 	1

Depth (ft)	Soil Description (Stratum Description-USDA Field Determination)	Sample No.	Field Test Data	Excav. Effort	Boulders: Count/ Class	Note No.
1		GS-1	ND	E	0	1, 2
2				E	0	
3				E	0	
4				E	0	
5				E	3A	
6				E	0	
7	Dark brown, fine to coarse SAND and fine to coarse GRAVEL, some Silt, trace Roots, damp. (TOPSOIL FILL)			E	1A	
8	· · ·			E	0	
9				E	1A	
10				E	0	
11				E	0	
12				E	7A	3
13				E	0	4
14	Bottom of Test Pit at 13 feet					
15						
16						

- 1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16, 2024.
- 2. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a Ion Science Phocheck Tiger organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).
- 3. Test pit terminated at approximate practical reach limit of the excavator at 13 feet.
- 4. Test pit backfilled with excavated spoils placed in approximately 1-foot-thick lifts each tamped with the excavator bucket.

Test Pit Plan	Bould	ler Class	Pro	portions Used	F = Fine	Groundwater			
12	Letter Designation	Size Range Classification	TRACE (TR.)	0 - 10%	M = Medium C = Coarse	((x) Encountered) Not Encountered		
4NORTH	A B			10 - 20% 20 - 35%	V = Very F/M = Fine to medium	Elapsed Time to Reading	Depth to Ground water		
	С	36" and Larger	AND	35 - 50%	F/C = Fine to coarse GR = Gray	(Hours)			
Volume = <u>12</u> cu. yd.		Excav	ation Effort		BN = Brown				
		E - Easy M - M	oderate D	- Difficult	YEL = Yellow				

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 T: 781.278.3700 F: 781.278.5701 F: 781.278.5702 www.gza.com

APPENDIX B.7

2025 GZA TEST BORING LOGS

GZA GeoEnvironmental, Inc. Engineers and Scientists

Pivotal Devens, LLC Proposed CFS-3 Development Hospital Road Devens, MA

BORING NO.: GZ-109 SHEET: 1 of 1 PROJECT NO: 01.0178186.00 REVIEWED BY: MJO

Drilling Co.: New England Boring Contractors

Manlea Thompson

Type of Rig: ATV

Ground Surface Elev. (ft.): 259 Rig Model: Diedrich D-70 Turbo Final Boring Depth (ft.): 17

Drilling Method: HSA Date Start - Finish: 8/28/2025 - 8/28/2025

Boring Location: See Plan

V. Datum: See Plan

H. Datum: See Plan

Auger/Casing Type: HSA I.D/O.D.(in): 3.25/6-5/8 Hammer Weight (lb.): Hammer Fall (in.):

Foreman:

Logged By: Kyran Peters

Sampler Type: Split Spoon I.D./O.D. (in.): 1.375/2 Sampler Hmr Wt (lb): 140 lbs Sampler Hmr Fall (in): 30" Autohammer

Groundwater Depth (ft.) Casing Stab. Time Date Time Water Depth 8/28/25 1455 Dry (17') 15 min

	er Fall ((in.):						raii (iii). 30						
Other:						Othe	r:	Autohammer						
Depth (ft)	Casing Blows/ Core	No.	Depth (ft.)	Samp Pen. (in)		Blows (per 6 in.)	SPT	Sample Description and Identification (Modified Burmister Procedure)		Remark	Field Test Data	Depth (ft.)	Stratum Description	Elev.
	Rate	S-1	0-2	24	12	2 1	3	S-1: (Top 7"): Brown, fine to medium SAND, some Silt, little Gra	avel,	<u>ır</u>		0.6'	TOPSOIL	258
-						2 2		trace Roots, dry. (Bottom 5"): Light brown/orange, fine to medium SAND, some S	.	1	24.3	2'	SUBSOIL	257
-		S-2	2-4	24	11	3 2 3 5	5	trace Roots, dry. S-2: Loose, light brown, fine to medium SAND, some Gravel, littl trace (-) Roots, dry.		2	1.1	4.5'	SAND	254
5_		S-3	5-7	24	11	12 13 12 9	25	S-3: Medium dense, gray to light brown, GRAVEL and fine to co SAND, trace Silt, dry.	arse		ND		SAND/GRAVE	
												8.5'		250
0 _		S-4	10-12	24	16	6 7 8 10	15	S-4: Medium dense, light brown, fine to medium SAND, trace Grace Silt, damp.	ravel,		ND			
- -													SAND	
15 _		S-5	15-17	24	17	7 10 11 12	21	S-5: Medium dense, light brown, fine to medium SAND, trace Si damp.	lt,		ND	17'		24
1								Bottom of boring at 17 feet.		3				
20 _														
25 _ -														
-														

1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16,

Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a Honeywell MiniRAE3000+ organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).
 Boring terminated at 17 feet below ground surface (bgs). Upon completion, the borehole was backfilled with soil cuttings.

REMARKS

178186.00 PIVOTAL DEVENS, LLC - PROP CFS-3 DEV. GPJ; STRATUM ONLY NORWOOD; 9/11/2025

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

GZA GeoEnvironmental, Inc. Engineers and Scientists

Pivotal Devens, LLC Proposed CFS-3 Development Hospital Road Devens, MA

BORING NO.: GZ-110 SHEET: 1 of 1 PROJECT NO: 01.0178186.00 REVIEWED BY: MJO

Drilling Co.: New England Boring Contractors

Type of Rig: ATV

Manlea Thompson Rig Model: Diedrich D-70 Turbo

Logged By: Kyran Peters Drilling Method: HSA Boring Location: See Plan Ground Surface Elev. (ft.): 271 Final Boring Depth (ft.): 26

Date Start - Finish: 8/27/2025 - 8/27/2025 H. Datum: See Plan

V. Datum: See Plan

Auger/Casing Type: HSA I.D/O.D.(in): 3.25/6-5/8 Hammer Weight (lb.): Hammer Fall (in.):

Foreman:

Other:

Sampler Type: Split Spoon I.D./O.D. (in.): 1.375/2 Sampler Hmr Wt (lb): 140 lbs Sampler Hmr Fall (in): 30" Autohammer

Casing Stab. Time Date Time Water Depth 8/27/25 1140 Dry (26') 24 15 min

Groundwater Depth (ft.)

Other	Casing			Samp	اما				¥	Ciald	-		
Depth (ft)	Blows/ Core Rate	No.	Depth (ft.)	_	Rec. (in)	Blows (per 6 in.)	SPT Value	Sample Description and Identification (Modified Burmister Procedure)	Remark	Field Test Data	Depth (ft.)	Stratum Description	Elev. (ft.)
-	rvate	S-1	0-2	24	9	5 5 6 5	11	S-1: Medium dense, dark brown, fine to coarse SAND, some Gravel, little Silt, trace Wood, damp.	1	4.4		TOPSOIL	
-	-	S-2	2-4	24	11	4 3 3 65	6	S-2: (Top 4"): Loose, brown, fine to coarse SAND and GRAVEL, little Silt, trace Roots, damp.	2	5.5	2' 2.3' 2.9BURIED	FILL ASPHALT PAVE	269.0' 268.7' ME&\$6.1'
5 _	_	S-3	4-6	24	19	29 29 24 24	53	(Bottom 7"): Bituminous ASPHALT pavement. S-3: Very dense, brown to gray, GRAVEL and fine to coarse SAND, trace Silt, dry.		5.5		FILL	
-		S-4	6-8	24	21	19 19 18 15	37	S-4: (Top 11"): Dense, light brown to gray, GRAVEL and fine to coarse SAND, trace Silt, dry.		5.4	6.9'		264.1'
10 _	_	S-5	8-10	24	15	6 7 9 9	16	(Bottom (10"): Dense, light brown, fine to coarse SAND, trace Gravel, trace Silt, damp. S-5: Medium dense, light brown, fine to coarse SAND, some Gravel, trace Silt, Iron oxide staining 9 to 10 inches from top of recovery, dry.		2.8	Ş	SAND/GRAVEL	
-											11.5'		259.5'
-		S-6	13-15	24	17	4 4 5 5	9	S-6: Loose, light brown, fine to medium SAND, trace Silt, damp.		0.1			
15 _		S-7	15-17	24	9	5 6 7 8	13	S-7: Medium dense, light brown, fine to medium SAND, trace Silt.		ND			
-	_	S-8	18-20	24	14	3 6 11 13	17	S-8: Medium dense, light brown, fine to medium SAND, trace (-) Silt. (USDA Field Determination: SAND)		1.1		SAND	
20 _	-	S-9	20-22	24	22	8 8 8 9	16	S-9: Medium dense, light brown, fine SAND, trace (+) Silt, Iron oxide coloring bottom 9 inches, moist. (USDA Gradation Determination:		1.3			
-	_	S-10	22-24	24	24	12 13 13 14	26	SAND) S-10: Medium dense, light brown, fine SAND, some Silt, Iron oxide staining 6-10 inches, 13 to 15 inches from top of recovery, damp.		4.0			
25 _		S-11	24-26	24	21	10 11 13 13	24	Occasional 1/2- to 3-inch-thick silt seam. (USDA Gradation Determination: LOAMY SAND)		3.8			
- 30	_							S-11: Medium dense, light brown to gray, fine to medium SAND, trace Silt, iron oxide staining observed top 11 inches of recovery. Occasional 1/2- to 1-inch-thick silt seam within top 11-inches of recovery. (USDA Field Determination: LOAMY SAND) Bottom of boring at 26 feet.	4		26'		245.0'

1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16,

2024.

2. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a Honeywell MiniRAE3000+ organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).

3. Water added into augers prior to sampling S-7 and S-8.

4. Boring terminated at 26 feet below ground surface after reaching target depth. Upon completion, the borehole was backfilled with soil cuttings to the ground surface.

REMARKS

178186.00 PIVOTAL DEVENS, LLC - PROP CFS-3 DEV. GPJ; STRATUM ONLY NORWOOD; 9/22/2025

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

GZA GeoEnvironmental, Inc. Engineers and Scientists

Manlea Thompson

Pivotal Devens, LLC Proposed CFS-3 Development Hospital Road Devens, MA

BORING NO.: **GZ-110A** SHEET: 1 of 1 PROJECT NO: 01.0178186.00 REVIEWED BY: MJO

Drilling Co.: New England Boring Contractors

Type of Rig: ATV

Rig Model:

Boring Location: See Plan Ground Surface Elev. (ft.): 271 Final Boring Depth (ft.): 15

H. Datum: See Plan

Logged By: Kyran Peters

Foreman:

Other:

Drilling Method: HSA

Date Start - Finish: 8/27/2025 - 8/27/2025 V. Datum: See Plan

Auger/Casing Type: HSA I.D/O.D.(in): 3.25/6-5/8 Hammer Weight (lb.): Hammer Fall (in.):

Sampler Type: Split Spoon I.D./O.D. (in.): 1.375/2 Sampler Hmr Wt (lb): 140 lbs Sampler Hmr Fall (in): 30" Other: Autohammer

Diedrich D-70 Turbo

Casing Stab. Time Date Time Water Depth 8/27/25 1215 Dry (15') 15 min

Groundwater Depth (ft.)

Othici							-				
Depth (ft)	Casing Blows/ Core	No.	Depth (ft.)	Pen.	Rec.	Blows (per 6 in.)	SPT	Sample Description and Identification (Modified Burmister Procedure)	Remark	Field Test Data	Stratum
	Rate		(10.)	()	(111)	(per o iii.)	value			Data	
-									1 2		
-											
5 _											
-											
-											REFER TO GZ-110 FOR STRA
_											
10 _											
-											
-		S-1	13-15	24	13	5 6	14	S-1: Medium dense, light brown, fine to medium SAND, trace Silt,	3	3.6	
- 15 _						8 8		wet.	4		15' 2
_								Bottom of boring at 15 feet.	5		
-											
-											
20 _											
-											
-											
- 25 _											
25 _ -											
-											
-											
- RO											

Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16, 2024. Offset approximately 4 feet East of GZ-110.
 Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a Honeywell MiniRAE3000+ organic

vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv). Boring advanced to 13 feet below ground surface (bgs) with augers prior to sampling.

Water added to augers prior to sampling S-1.

Boring terminated at 15 feet bgs after reaching target depth. Upon completion, the borehole was backfilled with soil cuttings.

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

Boring No.: GZ-110A

178186.00 PIVOTAL DEVENS, LLC - PROP CFS-3 DEV.GPJ; STRATUM ONLY NORWOOD; 9/11/2025

REMARKS

Pivotal Devens, LLC Proposed CFS-3 Development Hospital Road Devens, MA

BORING NO.: GZ-111 SHEET: 1 of 1 PROJECT NO: 01.0178186.00

REVIEWED BY: MJO

Time

1100

Drilling Co.: New England Boring Contractors

HSA

3.25/6-5/8

Manlea Thompson

Rig Model: Diedrich D-70 Turbo Boring Location: See Plan Ground Surface Elev. (ft.): 269 Final Boring Depth (ft.): 11

H. Datum: See Plan V. Datum: See Plan

Logged By: Kyran Peters Auger/Casing Type:

Sampler Type: Split Spoon I.D./O.D. (in.): 1.375/2 Sampler Hmr Wt (lb): 140 lbs

Date Start - Finish: 8/26/2025 - 8/26/2025

Date

8/26/25

Groundwater Depth (ft.) Casing Stab. Time Water Depth Dry (11') 15 min

Other:

I.D/O.D.(in):

Hammer Weight (lb.):

Hammer Fall (in.):

Foreman:

Sampler Hmr Fall (in): 30" Autohammer

Type of Rig: ATV

Drilling Method: HSA

Otner						Other		Adolamilo					
	Casing		- 5	Samp	le			0 1 5 11 17 11	Ϋ́	Field		Stratum	
Depth (ft)	Blows/ Core Rate	No.	Depth (ft.)			Blows (per 6 in.)	SPT Value	Sample Description and Identification (Modified Burmister Procedure)	Remark	Test	Depth (ft.)	Description	Elev. (ft.)
	rato	S-1	0-2	24	22	10 16	49	S-1: (Top 15"): Dense, light brown, fine to coarse SAND, some		3.6			
-						33 34		Gravel, some Silt, trace Roots.	١,	3.6			
								(Bottom 7"): Light brown, GRAVEL and fine to coarse SAND, little	1	27			
-		S-2	2-4	24	17	27 22	50	Silt.	2	3.7		FILL	
-	4					28 34							
								S-2: (Top 13"): Very dense, light brown, GRAVEL and fine to coarse		2.3			
		S-3	4-6	24	19	9 11	22	SAND, little Silt, dry.		2.3	4.4'		264.6'
5 _	-					11 10		(Bottom 4"): Brown, GRAVEL and fine to coarse SAND, trace Silt,					
								dry.					
_								S-3: (Top 5"): Brown, fine to coarse SAND and GRAVEL, little Silt,					
-								damp.					
_								(Bottom 14"): Medium dense, light brown, fine to coarse SAND, some				SAND/GRAVEL	
								Gravel, trace Silt, damp.					
-	1	S-4	9-11	24	7	8 8	17	S-4: Medium dense, light brown, fine to coarse SAND, little Gravel,		ND			
10 _	<u> </u>					9 10		trace Silt.					
						3 10		trace ont.			11'		258.0'
-								Bottom of boring at 11 feet.	3				
-	-							-					
-													
-													
15 _													
-	1												
_													
-	1												
-													
20													
_													
-	-												
-	-												
_													
25													
20 -	1												
-													
-	1												
-													
1 -	1			1	1		1						

Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16, 2024. Offset approximately 4 feet East of GZ-110.
 Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a Honeywell MiniRAE3000+ organic

vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).

3. Boring terminated at 11 feet bgs after reaching target depth. Upon completion, the borehole was backfilled with soil cuttings.

178186.00 PIVOTAL DEVENS, LLC - PROP CFS-3 DEV.GPJ; STRATUM ONLY NORWOOD; 9/11/2025 REMARKS

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

GZA GeoEnvironmental, Inc. Engineers and Scientists

Pivotal Devens, LLC Proposed CFS-3 Development Hospital Road Devens, MA

BORING NO.: GZ-113 SHEET: 1 of 1 PROJECT NO: 01.0178186.00

REVIEWED BY: MJO

Drilling Co.: New England Boring Contractors

Manlea Thompson

Rig Model: Diedrich D-70 Turbo Boring Location: See Plan Ground Surface Elev. (ft.): 283.5 Final Boring Depth (ft.): 18

H. Datum: See Plan V. Datum: See Plan

Logged By: Kyran Peters

Foreman:

Other:

Drilling Method: HSA

Type of Rig: ATV

Date Start - Finish: 9/3/2025 - 9/5/2025

Groundwater Depth (ft.)

Auger/Casing Type: HSA I.D/O.D.(in): 3.25/6-5/8 Hammer Weight (lb.):

Hammer Fall (in.):

Sampler Type: Split Spoon I.D./O.D. (in.): 1.375/2 Sampler Hmr Wt (lb): 140 lbs Sampler Hmr Fall (in): 30" Autohammer

Stab. Time Casing Date Time Water Depth 9/5/25 0945 Dry (18') 15 min

	Casing		,	Samp	ole	'			돗	Field	_	Stratum	
Depth (ft)	Blows/ Core Rate	No.	Depth (ft.)	Pen.	Rec.	Blows (per 6 in.)	SPT Value		Remark	Test Data	Deptl (ft.)	Stratum Description	Elev.
		GS-1	0-1					GS-1: (1'): Light brown, fine to coarse SAND and GRAVEL, trace Silt,		1.5			
-	-	GS-2	1-3					dry.	1	1.7			
-								GS-2: (3'): Light brown, fine to coarse SAND, some Gravel, little Silt.	2				
-		GS-3	3-5					GS-3: (5'): Light brown, fine to coarse SAND, trace Silt.	3	4.8			
5_		S-1	5-7	24	10	3 2 2 4	4	S-1: Loose, gray to light brown, GRAVEL and fine to coarse SAND, trace Silt, dry.		4.4			
-		S-2	7-9	24	14	3 2 4 4	6	S-2: Loose, gray, GRAVEL and fine to coarse SAND, trace Silt, dry.		4.3		FILL	
-		S-3	9-10	13	8	6 27	R	S-3: Light brown, fine to coarse SAND, some Gravel, trace Silt, damp.		4.6			
10 _	<u> </u>	S-4	10-12	24	7	3/1"	58	S-4: Very dense, light brown, GRAVEL and fine to coarse SAND, little	4	5.3			
-		0-4	10-12	24	,	28 25 33 25		Silt, damp.	4				
-		S-5	12-14	24	3	39 46	71	S-5: Very dense, light brown, GRAVEL and fine to coarse SAND, little		5.3			
-	-					25 21		Silt, dry.					
_	<u> </u>	S-6	14-16	24	15	11 15	30	S-6: Dense, light brown, fine to coarse SAND, some Gravel, trace Silt,		5.5	14'		269.5'
15 _						15 19		dry.					
-		S-7	16-18	24	16	19 22 21 20	43	S-7: Dense, light brown, fine to coarse SAND and GRAVEL, trace Silt,		5.9		SAND/GRAVEL	
						21 20		dry.			18'		265.5'
-								Bottom of boring at 18 feet.	5				
-													
20 _	-												
_	_												
_													
25													
25 _													
-	-												
-													
_													
_													
20													

Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16, 2024. Offset approximately 4 feet East of GZ-110.
 Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a Honeywell MiniRAE3000+ organic

vapor meter equipped with a photoionization detector (PID) and 10.6eV

Boring pre-excavated to 5 feet below ground surface (bgs) with VacMasters System 4600 VacTruck on 9/3/25, Borehole was backdilled with spoils.
Sample S-3 stopped at 10 feet due to ringing, gravel piece observed in tip of spoon, advanced augers to 10 feet before obtaining sample S-4.
Boring terminated at 18 feet bgs. Upon completion, borehole was backfilled with soil cuttings to the ground surface.

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

Boring No.: GZ-113

178186.00 PIVOTAL DEVENS, LLC - PROP CFS-3 DEV.GPJ; STRATUM ONLY NORWOOD; 9/11/2025

REMARKS

GZA GeoEnvironmental, Inc. Engineers and Scientists

Drilling Co.: New England Boring Contractors

Manlea Thompson

Commonwealth Fusion Systems Proposed CFS-4 Development Hospital Road Devens, MA

BORING NO.: GZ-114 SHEET: 1 of 1 PROJECT NO: 01.0174955.30 REVIEWED BY: MJO

8/19/2025 - 8/19/2025

Boring Location: See Plan

Date Start - Finish:

Ground Surface Elev. (ft.): 273 Final Boring Depth (ft.): 29

Date

8/19/25

H. Datum: See Plan V. Datum: See Plan

Auger/Casing Type: HSA I.D/O.D.(in): 4.25/8 Hammer Weight (lb.): Hammer Fall (in.):

Logged By: Kyran Peters

Foreman:

Other:

Sampler Type: Split Spoon I.D./O.D. (in.): 1.375/2 Sampler Hmr Wt (lb): 140 lbs Sampler Hmr Fall (in): 30" Autohammer

Type of Rig: ATV

Drilling Method: HSA

Rig Model: D-70 Turbo

Groundwater Depth (ft.) Stab. Time Casing Time Water Depth 1200 Dry (29') 27 5 min

	Casing		9	Samp	le	<u>'</u>			Į	Field	_	Stratum	
Depth (ft)	Blows/ Core Rate	No.	Depth (ft.)	Pen. (in)	Rec. (in)	Blows (per 6 in.)	SPT Value	Sample Description and Identification (Modified Burmister Procedure)	Remark	Test	Depth (ft.)	Description	Elev.
	rate	S-1	0-2	24	0	7 8	17	S-1: No recovery.					
-						9 10			1				
-		S-2	2-4	24	2	8 7	15	S-2: Medium dense, brown, GRAVEL, some fine to medium Sand,	2	ND			
_		0-2	2-4		-	8 7		little Silt, dry.	_				
								inde on, dry.					
5													
"-		S-3	5-7	24	16	9 7	13	S-3: Medium dense, dark brown, fine to coarse SAND, some Gravel,		3.6			
-						6 11		little Silt, trace Plant Matter, damp.					
-		S-4	7-9	24	8	3 12	30	S-4: Dense, dark brown to brown, fine to coarse SAND, some Gravel,		6.7			
-						18 18		little Silt, trace Roots, moist.					
_													
10										9.2		TOPSOIL	
		S-5	10-12	24	15	5 9	18	S-5: Medium dense, dark brown, fine to coarse SAND, some Gravel,		0.2			
_						9 10		little Silt, trace Wood fragments, moist.					
-	-	S-6	12-14	24	11	6 8	20	S-6: Medium dense, dark brown, fine to coarse SAND and GRAVEL,		7.2			
-						12 15		some Silt, trace Wood, moist.					
-													
15 _	.	S-7	15-17	24	22	14 15	26	C.7. Madium dance dayl, brown to brown fine to coarse CAND come		5.9			
_		5-7	10-17	24	22	11 11		S-7: Medium dense, dark brown to brown, fine to coarse SAND, some Gravel, some Silt, moist.					
								Cravos, como cine, moioc.		6.3			
		S-8	17-19	24	20	13 14	30	S-8: Dense, dark brown, fine to coarse SAND, some Silt, little Gravel,		0.0			
-						16 17		trace Wood fragments, moist.					
-									3		19.5'		253.5'
20 _		S-9	20-22	24	20	10 6	12	S-9: Medium dense, brown, fine to coarse SAND, some Gravel, trace		3.3			
-						6 4		Silt, slighty damp.					
_		0.40	00.04	0.4	44	40.40	24	0.40 M / 10 M / 1		3.1		FILL	
_		S-10	22-24	24	14	10 13 11 9	24	S-10: Medium dense, brown, fine to coarse SAND and GRAVEL, trace Silt, dry.					
						11.9		trace ont, dry.					
25	1										24.5'		248.5'
20 -		S-11	25-27	24	20	7 7	16	S-11: Medium dense, brown, fine to coarse SAND, trace Gravel, trace		3.1			
-						9 9		(-) Silt, dry.					
-		S-12	27-29	24	18	10 10	23	S-12: Medium dense, brown, fine to coarse SAND, trace Gravel, trace				SAND	
-						13 15		(-) Silt, dry.					
_											29'		244.0'
30								Bottom of boring at 29 feet.	4				

1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16,

2024.

2 Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a Honeywell MiniRAE3000+ organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).

3 Driller indicated augers advanced with decreased resistance at 19.5 feet below ground surface (bgs).

4 Borling terminated at 29 feet bgs. Upon completion the borehole was backfilled with drilling spoils.

174955.30 COMMONWEALTH FUSION SYSTEMS.GPJ; STRATUM ONLY NORWOOD; 9/11/2025

REMARKS

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

Commonwealth Fusion Systems Proposed CFS-4 Development Hospital Road Devens, MA

BORING NO.: GZ-115 SHEET: 1 of 1 PROJECT NO: 01.0174955.30 REVIEWED BY: MJO

8/22/2025 - 8/22/2025

Drilling Co.: **New England Boring Contractors**

Type of Rig: ATV Manlea Thompson Rig Model: D-70 Turbo Drilling Method: HSA

Boring Location: See Plan Ground Surface Elev. (ft.): 279 Final Boring Depth (ft.): 26

Date Start - Finish:

S-3: Medium dense, dark brown, fine to coarse SAND, some Gravel,

S-4: Medium dense, dark brown, fine to coarse SAND, some Gravel,

H. Datum: See Plan V. Datum: See Plan

Logged By: Jessica Abbazia

S-3

S-4

10-12

12-14

24 15

24 22

Foreman:

Stab. Time sing

6.0

6.2

10 min

Elev (ft.)

Stratum

Description

TOPSOIL

Auge	r/Casing	Type:	HSA			Samo	ler Typ	e: Split Spoon	!		Groundy	vater D	epth (f	t.)
_	.D.(in):		3.25/6.62				D. (in.			Date	Time	Wate	r Depth	Casi
Hamr	ner Weig	ht (lb.)): ₁₄₀			Samp	ler Hm	r Wt (lb): 140 lbs		8/22/25	0950	Dr	y (26')	24
Hamr	ner Fall	(in.):	30			Samp	ler Hm	r Fall (in): 30"						
Other	r: A	utoham	nmer			Othe	r:	Autohammer						
	Casing		,	Samp	ole	<u>'</u>					•	그루	Field	
Depth (ft)	Blows/ Core Rate	No.	Depth (ft.)	Pen. (in)	Rec. (in)	Blows (per 6 in.)		(Mod	Description an ified Burmister		on	Remark	Test Data	Depth (ft.)
		S-1	0-2	24	15	7 8	14	S-1: Medium dense, da	ark brown, fine to	coarse SAND,	some Silt, little	;	5.4	
-	1					6 4		Gravel, trace Roots/W	ood, moist.			1	0.4	
-	1											2		
-	1											3		
5_		S-2	5-7	24	15	3 1 2 2	3	S-2: Loose, dark brown Silt, trace Roots/Wood	•	SAND, some Gr	ravel, some		4.9	
10 _							26						6.0	

26

29

8 13

13 11

17 16

13 24

ON SYSTEMS.GPJ; STRATUM ONLY NORWOOD; 9/11/2025	30											
J; ST								Bottom of boring at 26 feet.	4			
RATU						9 10					26'	253.0'
M ONLY	- 25	S-9	24-26	24	17	7 8	17	S-9: Medium dense, brown, fine to coarse SAND, trace (-) Silt, dry.		0.0	SAND	
NORW	-	S-8	22-24	24	17	10 12 10 10	22	S-8: Medium dense, brown, fine to coarse SAND, trace (-) Silt, dry.		0.0	22'	257.0
OOD; 9/11/20	20 _	S-7	20-22	24	23	9 9 8 8	17	S-7: Medium dense, dark brown, fine to coarse SAND, some Gravel, some Silt, trace Roots/Wood, moist.		2.9	001	257.0'
125	-	S-6	17-19	24	22	10 15 14 16	29	S-6: Medium dense, dark brown, fine to coarse SAND, some Gravel, some Silt, trace Roots/Wood, moist.		4.9		
	-	S-5	15-17	24	20	4 9 12 10	21	S-5: Medium dense, dark brown, fine to coarse SAND, some Gravel, some Silt, trace Roots/Wood, moist.		3.7		

some Silt, trace Roots/Wood, moist.

some Silt, trace Roots/Wood, moist.

1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16,

2024.

2. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a Ion Science Phocheck Tiger organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).

3. Borehole advanced using hollow stem auger techniques from 0-24 feet below ground surface (bgs).

4. Borehole terminated at 26 feet bgs. Upon completion, the borehole was backfilled with soil cuttings.

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made

Boring No.: GZ-115

174955.30 COMMONWEALTH FUSIC

REMARKS

Commonwealth Fusion Systems Proposed CFS-4 Development Hospital Road Devens, MA

BORING NO.: GZ-116 SHEET: 1 of 1 PROJECT NO: 01.0174955.30 REVIEWED BY: MJO

Drilling Co.: New England Boring Contractors Type of Rig: ATV

Foreman: Manlea Thompson Logged By: Jessica Abbazia

Rig Model: D-70 Turbo Drilling Method: HSA

Boring Location: See Plan Ground Surface Elev. (ft.): 274 Final Boring Depth (ft.): 29

Date Start - Finish: 8/22/2025 - 8/22/2025

H. Datum: See Plan

V. Datum: See Plan

Groundwater Depth (ft.) Auger/Casing Type: Sampler Type: Split Spoon HSA Casing Stab. Time I.D/O.D.(in): 3.25/6.625 I.D./O.D. (in.): 1.375/2 Date Time Water Depth Hammer Weight (lb.): Sampler Hmr Wt (lb): 140 lbs 8/22/25 1255 140 Dry (29') 27 10 min Hammer Fall (in.): Sampler Hmr Fall (in): 30" 30 Other: Autohammer

Other:		utoham	mer			Other	:	Autohammer					
Depth (ft)	Casing Blows/ Core	No.	Depth	Samp Pen.	Rec.	Blows	SPT	Sample Description and Identification (Modified Burmister Procedure)	۱ä۱	Field Test	Jepth (ft.)	Stratum Description	Elev. (ft.)
-	Rate	S-1	(ft.) 0-2	(in) 24	(in) 24	(per 6 in.) 5 8 10 11	Value 18	S-1: Medium dense, dark brown, fine to coarse SAND, some Gravel, some Silt, trace Roots, moist.	1	Data 3.4			
5									3	0.0			
-		S-2	5-7	24	16	9 11 10 9	21	S-2: Medium dense, dark brown, fine to coarse SAND, some Gravel, some Silt, trace Roots, moist.		0.0			
10 _		S-3	10-12	24	18	5 6 8 9	14	S-3: Medium dense, dark brown, fine to coarse SAND, some Gravel, some Silt, trace Roots, moist.		0.0			
		S-4	12-14	24	22	9 9 8 8	17	S-4: Medium dense, dark brown, fine to coarse SAND, some Gravel, some Silt, trace Roots, moist.		0.0		TOPSOIL	
15 _		S-5	15-17	24	21	5 7 8 9	15	S-5: Medium dense, dark brown, fine to coarse SAND, some Gravel, some Silt, trace Roots, moist.		0.0			
-		S-6	17-19	24	15	15 17 15 23	32	S-6: Dense, dark brown, fine to coarse SAND, some Gravel, some Silt, trace Roots, moist.		0.0			
20 _		S-7	20-22	24	22	7 6 9 9	15	S-7: Medium dense, dark brown, fine to coarse SAND, some Gravel, some Silt, trace Roots, moist.		0.0			
-		S-8	22-24	24	17	10 9 18 16	27	S-8: Medium dense, dark brown, fine to coarse SAND, some Gravel, some Silt, trace Roots, moist.		0.0			
25 _		S-9	25-27	24	24	10 28 28 28	56	S-9: (Top 12"): Dark brown, fine to coarse SAND, some Gravel, some Silt, trace Roots, moist.		0.0	26'		248.0
-		S-10	27-29	24	18	23 29 37 35	66	(Bottom 12"): Light brown, fine to coarse SAND, little (+) Silt, dry. S-10: Very dense, light brown, fine to coarse SAND, little (+) Silt, trace Gravel, dry.		0.0	29'	SAND	245.0
30								Bottom of boring at 29 feet.	4				

1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16,

2. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a Ion Science Phocheck Tiger organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).

3. Borehole advanced using hollow stem auger techniques from 0-29 feet below ground surface (bgs).

4. Borehole terminated at 29 feet bgs. Upon completion, borehole backfilled with soil cuttings.

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

Boring No.: GZ-116

174955.30 COMMONWEALTH FUSION SYSTEMS.GPJ; STRATUM ONLY NORWOOD; 9/11/2025

REMARKS

Manlea Thompson

Commonwealth Fusion Systems Proposed CFS-4 Development Hospital Road Devens, MA

BORING NO.: GZ-118 SHEET: 1 of 2 PROJECT NO: 01.0174955.30 REVIEWED BY: MJO

Drilling Co.: New England Boring Contractors

Type of Rig: ATV

Boring Location: See Plan Ground Surface Elev. (ft.): 272.5 Final Boring Depth (ft.): 37

H. Datum: See Plan V. Datum: See Plan

Logged By: Jessica Abbazia

Foreman:

Rig Model: D-70 Turbo Drilling Method: HSA

Date Start - Finish: 8/22/2025 - 8/22/2025

Groundwater Depth (ft.)

Auger/Casing Type: HSA I.D/O.D.(in): 3.25/6.625 Hammer Weight (lb.): 140 Hammer Fall (in.): 30

Sampler Type: Split Spoon I.D./O.D. (in.): 1.375/2 Sampler Hmr Wt (lb): 140 lbs Sampler Hmr Fall (in): 30" Autohammer

Casing Stab. Time Date Time Water Depth 8/22/25 0315 Dry (37') 10 min

Other	· Aı	,. utoham	mer			Other		Autohammer					
	Casing			Şamp	le			Comple Description and Identification	ark	Field	- -	Stratum	· -
Depth (ft)	Blows/ Core Rate	No.	Depth (ft.)	Pen. (in)	Rec. (in)	Blows (per 6 in.)	SPT Value	Sample Description and Identification (Modified Burmister Procedure)	Remark	Test Data	Dept (ft.)	Stratum escription	Elev (ft.)
1		S-1	0-2	24	18	6 8 9 9	17	S-1: Medium dense, dark brown, fine to coarse SAND, some Gravel, some Silt, trace Roots, moist.	1	0.0			
_									2				
5 _		S-2	5-7	24	17	9 7	13	S-2: Medium dense, dark brown, fine to coarse SAND, some Gravel,	3	0.0			
-		02				6 6		some Silt, trace Roots, moist.					
10 _		S-3	10-12	24	19	6 5 6 2	11	S-3: Medium dense, dark brown, fine to coarse SAND, some Gravel, some Silt, trace Roots, moist.		0.0		TOPSOIL	
-		S-4	12-14	24	24	9 11 11 10	22	S-4: Medium dense, dark brown, fine to coarse SAND, some Gravel, some Silt, trace Roots, moist.		0.0			
15 <u> </u>		S-5	15-17	24	24	3 7 8 9	15	S-5: Medium dense, dark brown, fine to coarse SAND, some Gravel, some Silt, trace Roots, moist.		0.0			
-		S-6	17-19	24	24	17 12 13 14	25	S-6: Medium dense, dark brown, fine to coarse SAND, some Gravel, some Silt, trace Roots, moist.		0.0			
20 _		S-7	20-22	24	20	8 7 8 7	15	S-7: Medium dense, light brown, fine to coarse SAND, some Gravel, trace Silt, dry.		0.0	19.5'		253.
_		S-8	22-24	24	22	16 20 20 15	40	S-8: Dense, light brown, fine to coarse SAND, some Gravel, trace Silt, \ensuremath{dry} .		0.0			
25 _ -		S-9	25-27	24	22	11 18 32 26	50	S-9: Very dense, light brown, fine to coarse SAND, some Gravel, trace Silt, dry.		0.0	SA	ND/GRAVEL	
30													

1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16,

2.024.
2. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a Honeywell MiniRAE3000 meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).

3. Borehole advanced using hollow stem auger techniques from 0-35 feet below ground surface (bgs).

REMARKS

174955.30 COMMONWEALTH FUSION SYSTEMS.GPJ; STRATUM ONLY NORWOOD; 9/11/2025

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

GZA
GeoEnvironmental, Inc.
Engineers and Scientists

Commonwealth Fusion Systems Proposed CFS-4 Development Hospital Road Devens, MA BORING NO.: GZ-118 SHEET: 2 of 2 PROJECT NO: 01.0174955.30 REVIEWED BY: MJO

				Samp	مام				<u> </u>	F:-1-1			
Depth (ft)	Casing Blows/		Depth	Don	Rec	Blows	SPT	Sample Description and Identification (Modified Burmister Procedure)	nar	Test	£.	Stratum Description	Elev.
(ft)	Core Rate	No.	(ft.)	(in)	(in)	(per 6 in.)	Value	(Modified Burmister Procedure)	Remark	Field Test Data	9 .	Description	⊞ #
	Nate	S-10	30-32	24	22	6 10	30	S-10: Dense, light brown, fine to coarse SAND, some Gravel, trace	+-	0.0			
_						20 27		Silt, dry.		0.0			
								•					
_													
-													
												SAND/GRAVEL	
25													
35 _	-	S-11	35-37	24	21	13 13	31	S-11: Dense, light brown, fine to coarse SAND, some Gravel, trace		0.0			
_		0-11	00-07			18 13		Silt, dry.					
						10 13		Siit, dry.			37'		23
-								Bottom of boring at 37 feet.	4		31		23
_								3 -					
-													
40 _													
-	1												
-													
_													
-													
1 5 _													
	1												
-	-												
_]												
_													
_													
50													
JU	-												
_													
-	1												
_													
55 _													
-													
-													
_													
-													
0 _													
-	-												
-	1												
_]												
65 _													
,													
_													
_				L	l								
	. Borehole	e termina	ated at 37 f	feet bgs	. Upor	n completion, bo	rehole b	packfilled with soil cuttings.					
				,									
KEMAKKS													
Ĭ													
ارت													
- 1													

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

Boring No.: GZ-118

174955.30 COMMONWEALTH FUSION SYSTEMS.GPJ; STRATUM ONLY NORWOOD; 9/11/2025

Manlea Thompson

Commonwealth Fusion Systems Proposed CFS-4 Development Hospital Road Devens, MA

BORING NO.: GZ-119 SHEET: 1 of 1 PROJECT NO: 01.0174955.30 REVIEWED BY: MJO

Drilling Co.: New England Boring Contractors

Type of Rig: ATV

Boring Location: See Plan Ground Surface Elev. (ft.): 270 Final Boring Depth (ft.): 21

H. Datum: See Plan V. Datum: See Plan

Logged By: Kyran Peters

Foreman:

Rig Model: D-70 Turbo Drilling Method: HSA

Date Start - Finish: 8/25/2025 - 8/25/2025

Groundwater Depth (ft.)

Auger/Casing Type: HSA I.D/O.D.(in): 3.25/6.625 Hammer Weight (lb.): 140 Hammer Fall (in.): 30

Sampler Type: Split Spoon I.D./O.D. (in.): 1.375/2 Sampler Hmr Wt (lb): 140 lbs Sampler Hmr Fall (in): 30" Other: Autohammer

Casing Stab. Time Date Time Water Depth 8/25/25 1325 Dry (21') 15 min

Other:		utoham				Other	r:	Autonammer					
Depth (ft)	Casing Blows/ Core Rate	No.	Depth (ft.)	Samp Pen. (in)		Blows (per 6 in.)	SPT Value	Sample Description and Identification (Modified Burmister Procedure)	Remark	Field Test Data	Depth (ft.)	Stratum Description	Elev. (ft.)
5_		S-1 S-2 S-3	0-2 2-4 4-6	24 24 24	15	2 1 2 2 3 1 2 2 8 8 11 11	3 3 19	S-1: (Top 9"): Brown, fine to medium SAND, some Silt, trace Roots, dry. (Bottom 13"): Very loose, light brown, fine to medium SAND, little Silt, trace Roots, dry. S-2: Very loose, light brown, fine to medium SAND, trace Silt, trace Roots, dry. S-3: Medium dense, light brown, fine to coarse SAND and GRAVEL, little Silt, dry.	1	2.5 4.5 4.7	4'	TOPSOIL SAND	269.2' 266.0'
- - 10 _ -		S-4	9-11	24	11	8 8 15 10	23	S-4: Medium dense, light brown, fine to coarse SAND and GRAVEL, trace Silt, dry.		4.5		SAND/GRAVEL	
- 15 _ -		S-5	14-16	24	22	7 11 12 11	23	S-5: Medium dense, light brown, fine to coarse SAND and GRAVEL, trace Silt, dry. Soils appeared layered.		4.5			
- 20 _ - -		S-6	19-21	24	18	13 12 12 12	24	S-6: (Top 11"): Medium dense, light brown, fine to coarse SAND and GRAVEL, trace Silt, dry. (Bottom 7"): Light brown to gray, fine to medium SAND, some Silt, little Silty Clay, moist. Bottom of boring at 21 feet.	3	4.2	19.9'	SILTY SAND	250.1° 249.0°
25 _ - - - - 30													

1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16,

2024. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a Honeywell MiniRAE3000 meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv). Upon completion, borehole was backfilled with drill cuttings to ground surface level.

REMARKS

174955.30 COMMONWEALTH FUSION SYSTEMS.GPJ; STRATUM ONLY NORWOOD; 9/11/2025

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

GZA GeoEnvironmental, Inc. Engineers and Scientists

Commonwealth Fusion Systems Proposed CFS-4 Development Hospital Road Devens, MA

BORING NO.: GZ-120 SHEET: 1 of 1 PROJECT NO: 01.0174955.30

REVIEWED BY: MJO

8/25/2025 - 8/25/2025

Drilling Co.: New England Boring Contractors

Foreman: Manlea Thompson

Logged By: Kyran Peters

Other:

Type of Rig: ATV Rig Model: D-70 Turbo Drilling Method: HSA

Boring Location: See Plan Ground Surface Elev. (ft.): 277.5 Final Boring Depth (ft.): 12

Date Start - Finish:

H. Datum: See Plan V. Datum: See Plan

Auger/Casing Type: HSA I.D/O.D.(in): 3.25/6.625 Hammer Weight (lb.): 140 Hammer Fall (in.): 30

Autohammer

Sampler Type: Split Spoon I.D./O.D. (in.): 1.375/2 Sampler Hmr Wt (lb): 140 lbs Sampler Hmr Fall (in): 30" Autohammer

Casing Stab. Time Date Time Water Depth 8/25/25 1450 Dry (12") 15 min

Groundwater Depth (ft.)

Othici		aro.ia			_								
	Casing			Samp	ole			0 1 0 1 0 111 00 0	 	Field	ے	Stratum	
Depth (ft)	Blows/ Core	No.		Pen.		Blows (per 6 in.)	SPT Value	Sample Description and Identification (Modified Burmister Procedure)	Remark	Test	Depth (ft.)	Description	Elev.
	Rate	0.4	` '	(in)	18		20		<u> </u>		0.4'	TOPSOIL	277.1'
		S-1	0-2	24	10	6 10	20	S-1: (Top 5"): Brown, fine to coarse SAND and GRAVEL, little Silt,		4.6	0.4	TOTOGIL	2//.1
-	1					10 7		trace Roots, dry.	1				
_]							(Bottom 13"): Medium dense, light brown, fine to coarse SAND and		4.9			
		S-2	2-4	24	17	5 6	13	GRAVEL, little Silt, trace Roots, dry.	2	1.0			
-						7 7		S-2: Medium dense, light brown, fine to coarse SAND, little Gravel,					
	1							trace Silt, trace Roots, dry.					
5 _				١			15			5.1			
		S-3	5-7	24	18	9 7	15	S-3: Medium dense, light brown, fine to coarse SAND and GRAVEL,					
-	1					8 13		little Silt, dry.				SAND/GRAVEL	
-	1												
_													
-	1												
10										4.3			
	1	S-4	10-12	24	16	8 8	20	S-4: Medium dense, light brown, fine to coarse SAND and GRAVEL,		4.3			
-						12 12		little Silt, dry.					
											12'		265.5'
-	1							Bottom of boring at 12 feet.	3				200.0
								g <u>_</u>	-				
-													
15													
	1												
_													
-	1												
-	1												
_													
20													
20 -	1												
l _													
-													
-	1												
_													
25													
25 _	-												
_	1												
-													
									1				
-													
20													
- ا]								1				
30	1		1	1	1	I	I	1	1	1	1		

1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16,

2024.

2. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a Honeywell MiniRAE3000 meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv). 3. Upon completion, borehole was backfilled with drill cuttings to ground surface level.

174955.30 COMMONWEALTH FUSION SYSTEMS.GPJ; STRATUM ONLY NORWOOD; 9/11/2025 REMARKS

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

Commonwealth Fusion Systems Proposed CFS-4 Development Hospital Road Devens, MA

BORING NO.: GZ-121 SHEET: 1 of 1 PROJECT NO: 01.0174955.30

REVIEWED BY: MJO

Drilling Co.: New England Boring Contractors

Foreman: Manlea Thompson Type of Rig: ATV Rig Model: D-70 Turbo Drilling Method: HSA

Boring Location: See Plan Ground Surface Elev. (ft.): 269 Final Boring Depth (ft.): 22 Date Start - Finish: 9/4/2025 - 9/4/2025

H. Datum: See Plan V. Datum: See Plan

Auger/Casing Type: HSA I.D/O.D.(in): 3.25/6.625 Hammer Weight (lb.): 140 Hammer Fall (in.): 30

Autohammer

Logged By: Kyran Peters

Other:

Sampler Type: Split Spoon I.D./O.D. (in.): 1.375/2 Sampler Hmr Wt (lb): 140 lbs Sampler Hmr Fall (in): 30" Autohammer

Groundwater Depth (ft.) Stab. Time Casing Date Time Water Depth 9/4/25 0945 Dry (22') 15 min

otner: /	Autonan	IIIICI			Other		7 de l'allimoi					
Casing		,	Samp	ole				ž	Field	_	Stratum	
Oepth Blows/ (ft) Core Rate	No.	Depth (ft.)	Pen. (in)		Blows (per 6 in.)	SPT Value	Sample Description and Identification (Modified Burmister Procedure)	Remark	Test Data	Depth (ft.)	Description	Elev.
1 1010	S-1	0-2	24	18	3 3	11	S-1: (Top 6"): Brown, fine to medium SAND, little Silt, little Gravel,		2.3	0.8'	TOPSOIL	268.2'
-	S-2	2-4	24	5	8 6 5 4 5 7	9	trace Roots, dry. (Bottom 12"): Medium dense, light brown, fine to coarse SAND and GRAVEL, trace Silt, dry. S-2: Loose, light brown, fine to coarse SAND, some Gravel, little Silt,	1 2	1.7		FILL	
5	S-3	4-6	24	15	6 5	9	dry.		2.8	4'		265.0'
-	S-4	6-8	24	9	4 5 7 9 9 15	18	S-3: Loose, light brown, fine to coarse SAND, some Gravel, trace Silt, dry. S-4: Medium dense, light brown, fine to coarse SAND and GRAVEL, trace Silt, dry.		1.8			
0	S-5	10-12	24	16	7 7 8 9	15	S-5: Medium dense, light brown, fine to coarse SAND, some Gravel, trace Silt, damp.		1.5		SAND/GRAVEL	
- 5 _ - -	S-6	15-17	24	22	7 9 14 27	23	S-6: (Top 20"): Medium dense, light brown, fine to medium SAND and Clayey SILT, damp. Stratified deposit. (Bottom 2"): Light brown to gray, GRAVEL, some Clayey Silt, some fine to medium Sand, damp.	3	3.5	13.5'	SAND/CLAYEY SILT	255.5 252.0
0 _	S-7	20-22	24	19	8 9 12 14	21	S-7: Medium dense, light brown, fine to coarse SAND, some Gravel, little Silt, damp.		3.6	22'	SAND/GRAVEL	247.0
							Bottom of boring at 22 feet.	4				
_ 25 _ -												
30												

1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16, 1. Ground surface elevation estimated morn opography depicted on a control of 2024, 25' East of staked location.
2. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a Honeywell MiniRAE3000 meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).
3. Rig chatter while advancing augers from 17 feet to 18 feet below ground surface (bgs) possible indicating a stratum change.
4. Borehole terminated at 22 feet bgs after reaching target depth. Upon completion the borehole was backfilled with soil cuttings to ground surface.

174955.30 COMMONWEALTH FUSION SYSTEMS.GPJ; STRATUM ONLY NORWOOD; 9/11/2025

REMARKS

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

GZA GeoEnvironmental, Inc. Engineers and Scientists

Commonwealth Fusion Systems Proposed CFS-4 Development Hospital Road Devens, MA

BORING NO.: GZ-122 SHEET: 1 of 2 PROJECT NO: 01.0174955.30

REVIEWED BY: MJO

Drilling Co.: New England Boring Contractors

Foreman: Manlea Thompson Logged By: Kyran Peters

Type of Rig: ATV Rig Model: D-70 Turbo Drilling Method: HSA

Boring Location: See Plan Ground Surface Elev. (ft.): 270 Final Boring Depth (ft.): 53.8 Date Start - Finish: 8/27/2025 - 8/27/2025

H. Datum: See Plan V. Datum: See Plan

Auger/Casing Type: HSA I.D/O.D.(in): 3.25/6.625 Hammer Weight (lb.): 140 Hammer Fall (in.): 30

Sampler Type: Split Spoon I.D./O.D. (in.): 1.375/2 Sampler Hmr Wt (lb): 140 lbs Sampler Hmr Fall (in): 30"

Stab. Time Casing Date Time Water Depth 8/28/25 1030 31.9 50 15 min 33.8 8/28/25 1045 50 30 min

Groundwater Depth (ft.)

	^.		JU mor			Other		Autohammer	0/20/25	1045		7.2	30	301	
Other	Casing	utoham		Camp	Ja	Other		Autoriammer	8/28/25	1120			45	65 r	กเท
Depth (ft)	Blows/ Core Rate	No.	Depth (ft.)	Samp Pen. (in)		Blows (per 6 in.)	SPT Value	Sample Description an (Modified Burmister		on	Remark	Field Test Data	De (ff.)	Stratum scription	Elev. (ft.)
-	Tato	S-1	0-2	24	13	4 28 6 7	34	S-1: Dense, dark brown, fine to coarse so Silt, trace Roots, damp.	SAND, some G	ravel, some	1	6.2	7	TOPSOIL	
-		S-2	2-4	24	11	8 6 5 53	11	S-2: (Top 5"): Dark brown, GRAVEL, so Silt, trace Roots, damp.	me fine to coar	se Sand, some	2	5.3	2.4' 2.9BURIED AS	PHALT PAVE	267.6' EME 267 .1'
5_		S-3	4-6	24	19	20 26 23 19	49	(Bottom 6"): Bituminous ASPHALT pav S-3: Dense, light brown, GRAVEL and fi dry.		AND, trace Silt,		5.0			
-	_	S-4	6-8	24	16	12 15 14 9	29	S-4: Medium dense, light brown, fine to little Silt, dry.	coarse SAND,	some Gravel,		5.3		FILL	
-	-	S-5	8-10	24	16	4 3 5 8	8	S-5: (Top 11"): Loose, light brown, fine Gravel, little Silt, trace Roots, dry.	to coarse SANI	D, some		5.9	8.9'		261.1'
10 _		S-6	10-12	24	14	7 7 12 13	19	(Bottom 5"): Light brown, fine to coarse damp. S-6: (Top 5") Light brown, fine to coarse				5.7	10.4'	SSIBLE FILL	259.6'
- - 15 _								Silt, damp. (Bottom 9"): Medium dense, light brown GRAVEL, trace Silt, damp.	n, fine to coarse	SAND and		6.1	13.5'	ND/GRAVEL	256.5'
-		S-7	15-17	24	21	5 7 7 7	14	S-7: Medium dense, light brown, fine to	medium SAND	, trace Silt.		S			
20		S-8	20-22	24	18	6 6 6 7	12	S-8: Medium dense, light brown, fine to damp.	medium SAND	, trace Silt,		6.2		SAND	
25 _		S-9	25-27	24	22	5 4 7 17	11	S-9: (Top 9"): Light brown, fine to media (Middle 7"): Light brown, Clayey SILT, s moist. (Bottom 6"): Light brown, fine to mediar little Gravel, damp.	some fine to me	edium Sand,		3.7	20.1	AYEY SILT	244.2' 243.6'
30_															

1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16,

2024.

2. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a Honeywell MiniRAE3000 meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).

REMARKS

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

GZA GeoEnvironmental, Inc. Engineers and Scientists

Commonwealth Fusion Systems Proposed CFS-4 Development Hospital Road Devens, MA

BORING NO.: GZ-122 SHEET: 2 of 2 PROJECT NO: 01.0174955.30 REVIEWED BY: MJO

	Casing		5	Samp	le			0 1 5 1 11 115 11	Ĭ	Field	. Stratum
Depth (ft)	Blows/ Core Rate	No.	Depth (ft.)			Blows (per 6 in.)	SPT Value	Sample Description and Identification (Modified Burmister Procedure)	Remark	Test	O Stratum S Stratum S S S S S S S S S S S S S S S S S S S
-	rtate	S-10	30-32	24	22	8 10 29 34	39	S-10: Dense, light brown, fine to coarse SAND and GRAVEL, little Silt, damp.	<u> </u>	7.2	
- 35 _ - -		S-11	35-37	24	18	13 16 19 22	35	S-11: Dense, light brown, fine to coarse SAND and GRAVEL, little Silt, damp.		6.7	SAND/GRAVEL
40 _ - -		S-12	40-42	24	15	5 7 7 7	14	S-12: Medium dense, light brown, fine to coarse SAND, some Gravel, little Silt, wet.		7.1	
- 45 _ - -		S-13	45-47	24	15	5 8 13 19	21	S-13: Medium dense, olive brown, GRAVEL, some fine to medium Sand, some Clayey Silt, wet.	3	5.2	43.5'
- 50 _		S-14	50-52	24	8	4 4 5 5	9	S-14: Loose, olive brown, fine to medium SAND, some Gravel, little Clayey Silt, wet.		7.4	GLACIAL TILL
-		S-15	52- 53.8	22	22	10 11 16 50/4	27	S-15: Very dense, olive brown, fine to medium SAND, some Gravel, little Clayey Silt.	4	7.4	53.8' 21
- 55 _ -								Bottom of boring at 53.8 feet.	5		33.0
-											
60 _ - -											
- - 65 _											

A positive head of water was not added and maintained within the augers prior to obtaining samples S-13 and S-14.
 A positive head of water was added and maintained within the augers prior to obtaining sample S-15.
 Boring terminated at 53.8 feet below ground surface (bgs) after reaching target depth. Upon completion, the borehole was backfilled with soil cuttings to the ground surface.

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

Boring No.: GZ-122

174955.30 COMMONWEALTH FUSION SYSTEMS.GPJ; STRATUM ONLY NORWOOD; 9/11/2025

REMARKS

Commonwealth Fusion Systems Proposed CFS-4 Development Hospital Road Devens, MA

BORING NO.: GZ-124 SHEET: 1 of 1 PROJECT NO: 01.0174955.30

REVIEWED BY: MJO

8/25/2025 - 8/25/2025

Drilling Co.: New England Boring Contractors

Foreman: Manlea Thompson

Logged By: Kyran Peters

Other:

Type of Rig: ATV Rig Model: D-70 Turbo

Drilling Method: HSA

Boring Location: See Plan Ground Surface Elev. (ft.): 268.5 Final Boring Depth (ft.): 22

Date Start - Finish:

H. Datum: See Plan V. Datum: See Plan

Auger/Casing Type: HSA I.D/O.D.(in): 3.25/6.625 Hammer Weight (lb.): 140 Hammer Fall (in.): 30

Autohammer

Sampler Type: Split Spoon I.D./O.D. (in.): 1.375/2 Sampler Hmr Wt (Ib): 140 lbs Sampler Hmr Fall (in): 30" Autohammer

Groundwater Depth (ft.) Stab. Time Casing Date Time Water Depth 8/25/25 1038 Dry (22') 20 20 min

Other		atonan				Otilo							
	Casing			Samp	ole				논	Field	٠ ـ	Stratum	
Depth (ft)	Blows/ Core	No.	Depth (ft.)			Blows (per 6 in.)	SPT Value	Sample Description and Identification (Modified Burmister Procedure)	Remark	Test	Depth (ft.)	Description	Elev.
	Rate	S-1	0-2	24	17	2 1	2	S-1: (Top 2"): Brown, fine to medium SAND, some Silt, trace Roots,	IĽ.		0.2'	TOPSOIL	268.3'
_		•	"-			1 2		dry.		5.4			
-		S-2	2-4	24	15	3 3 5 7	8	(Bottom 15"): Very loose, light brown, fine to coarse SAND, some Silt, trace (-) Roots, dry.	2	5.3		SAND	
								S-2: Loose, light brown, fine to coarse SAND, some Silt, dry.	3				
5 <u> </u>		S-3	5-7	24	17	25 20 31 27	51	S-3: Very dense, light brown, GRAVEL and fine to coarse SAND, some Silt, dry.		2.3	4.5'		264.0'
- - 10 _ -		S-4	10-12	24	20	12 12 11 13	23	S-4: Medium dense, light brown, fine to coarse SAND and GRAVEL, little Silt, dry.		5.2		SAND/GRAVEL	
-											13.5'		255.0'
- 15 _ -		S-5	15-17	24	24	9 12 12 12	24	S-5: Medium dense, light brown, fine to coarse SAND, trace Silt, moist.		5.3	10.0	SAND	255.0
-											18.5'	· 	250.0'
20 _		S-6	20-22	24	18	13 17 15 16	32	S-6: Dense, light brown, GRAVEL and fine to coarse SAND, trace Silt, moist.		5.4		SAND/GRAVEL	
_											22'		246.5'
- 25 _								Bottom of boring at 22 feet.	4				
- - -													
30						1							

1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16,

2024. As drilled location 9 feet west of stake.

2. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a Honeywell MiniRAE3000 meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).

3. Intense rig chatter advancing augers from 9 to 10 feet below ground surface (bgs), possibly indicating the presence of cobbles and boulders.

4. Boring terminated at 22 feet bgs. Upon completion, borehole was backfilled with soil cutting to the ground surface.

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

Boring No.: GZ-124

174955.30 COMMONWEALTH FUSION SYSTEMS.GPJ; STRATUM ONLY NORWOOD; 9/11/2025

REMARKS

Commonwealth Fusion Systems Proposed CFS-4 Development Hospital Road Devens, MA

BORING NO.: GZ-125 SHEET: 1 of 1 PROJECT NO: 01.0174955.30 REVIEWED BY: MJO

Drilling Co.: New England Boring Contractors

Type of Rig: ATV Rig Model: D-70 Turbo Boring Location: See Plan Ground Surface Elev. (ft.): 269 Final Boring Depth (ft.): 21

H. Datum: See Plan V. Datum: See Plan

Manlea Thompson Logged By: Kyran Peters

Foreman:

Other:

Drilling Method: HSA

Date Start - Finish: 8/26/2025 - 8/26/2025

Auger/Casing Type: HSA I.D/O.D.(in): 3.25/6.625 Hammer Weight (lb.): 140 Hammer Fall (in.): 30

Autohammer

Sampler Type: Split Spoon I.D./O.D. (in.): 1.375/2 Sampler Hmr Wt (lb): 140 lbs Sampler Hmr Fall (in): 30" Autohammer

Casing Stab. Time Date Time Water Depth 8/26/25 1455 Dry (21') 15 min

Groundwater Depth (ft.)

Other		ululiali				Other		Adolamilo					
	Casing		,	Samp	le				ırk	Field		Stratum	
Depth (ft)	Blows/ Core Rate	No.		Pen. (in)		Blows (per 6 in.)	SPT Value	Sample Description and Identification (Modified Burmister Procedure)	Remark	Test Data	Depth (ft.)	Description	Elev.
-	-	S-1 S-2	0-2	24	12	10 18 25 27 24 18 17 23	43 35	S-1: (Top 2"): Brown, fine to coarse SAND, little Silt, trace Roots, dry. (Bottom 19"): Dense, light brown, fine to coarse SAND, some Gravel, little Silt, dry S-2: Dense, light brown, fine to coarse SAND, some Gravel, some Silt, dry.	1 2	ND ND	0.2'	TOPSOIL FILL	268.8'
5 _ - -	-	S-3	4-6	24	17	7 6 6 7	12	S-3: Medium dense, light brown, fine to coarse SAND, trace Gravel, trace (-) Silt, damp.		ND ·	4		203.0
- 10 _ -	-	S-4	9-11	24	19	10 7 10 10	17	S-4: Medium dense, light brown, fine to coarse SAND, little Gravel, little Silt, damp. Silt seam at approximately 15- to 17-inches from the top of recovery.		ND		SAND	
- - 15 _	-	S-5	14-16	24	16	7 14 19 17	33	S-5: Dense, light brown, fine to coarse SAND, some Gravel, trace Silt, damp.		ND	12.5'		256.5'
20 _		S-6	19-21	24	17	7 10 12 11	22	S-6: Medium dense, light brown, fine to coarse SAND, some Gravel, trace Silt, damp.		ND	21'	SAND/GRAVEL	248.0'
- - 25	-							Bottom of boring at 21 feet.	3				
30													

1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16,

Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a Honeywell MiniRAE3000 meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).
 Boring terminated at 21 feet below ground surface (bgs) after reaching target depth. Upon completion, borehole was backfilled with soil cuttings to the ground surface.

174955.30 COMMONWEALTH FUSION SYSTEMS.GPJ; STRATUM ONLY NORWOOD; 9/11/2025 REMARKS

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

30

Commonwealth Fusion Systems Proposed CFS-4 Development Hospital Road Devens, MA

BORING NO.: GZ-126 SHEET: 1 of 1 PROJECT NO: 01.0174955.30

REVIEWED BY: MJO

Drilling Co.: New England Boring Contractors

Foreman: Manlea Thompson Logged By: Kyran Peters

Type of Rig: ATV Rig Model: D-70 Turbo

Drilling Method: HSA

Boring Location: See Plan Ground Surface Elev. (ft.): 269 Final Boring Depth (ft.): 22 Date Start - Finish: 8/26/2025 - 8/26/2025

H. Datum: See Plan V. Datum: See Plan

Auger/Casing Type: HSA I.D/O.D.(in): 3.25/6.625 Hammer Weight (lb.): 140

Autohammer

Hammer Fall (in.):

Other:

Sampler Type: Split Spoon I.D./O.D. (in.): 1.375/2 Sampler Hmr Wt (lb): 140 lbs Sampler Hmr Fall (in): 30" Autohammer

Groundwater Depth (ft.) Casing Stab. Time Date Time Water Depth 8/26/25 1310 Dry (22") 20 15 min

Other	Cacin			_	_								
Depth	Casing Blows/			Samp		Diama	ODT	Sample Description and Identification	ıar	Field	÷ Şt	Stratum	š. (.
(ft)	Core Rate	No.	Depth (ft.)	Pen.	(in)	Blows (per 6 in.)	SPT Value	(Modified Burmister Procedure)	Remark	Test Data	Depth (ft.)	Description	Elev. (ft.)
	Rate	S-1	0-2	24	19	6 10	21	S-1: (Top 6"): Brown, fine to coarse SAND, some Gravel, little silt,	ш.	ND	0.6'	TOPSOIL	268.4'
-	-					11 8		trace Roots, dry.	1	IND		FILL	
_	1			١	١		15	(Bottom 13"): Medium dense, light brown, fine to coarse SAND and		ND	2'		267.0'
		S-2	2-4	24	14	8 8	15	GRAVEL, little Silt, dry.	2				
_	1					7 21		S-2: Medium dense, light brown, fine to coarse SAND, some Gravel,					
-	1							little Silt, dry.					
5 _	1	S-3	5-7	24	14	7 7	16	S 2: Modium dones light brown fine to cooree SAND and CDAVE		ND			
		3-3	5-7	24	14	9 9		S-3: Medium dense, light brown, fine to coarse SAND and GRAVEL, trace Silt, dry.					
						9 9		trace Siit, dry.					
-	1												
-	-											SAND/GRAVEL	
_	_												
10										ND			
	1	S-4	10-12	24	16	8 16	33	S-4: Dense, light brown, fine to coarse SAND, some Gravel, trace Silt,		טאו			
-	1					17 13		damp.					
-	1												
											13.5'		255.5'
45	1											CLAYEY SILT	
15 _	1	S-5	15-17	24	18	7 18	38	S-5: (Top 6"): Gray, Clayey SILT, some fine to medium Sand, moist.		ND	15.5'		253.5'
-						20 15		(Bottom 12"): Dense, light brown, fine to coarse SAND and GRAVEL,					
_								little Silt , damp.					
								·					
-	1												
-	1											SAND/GRAVEL	
20 _	1				40		32	0.00		ND			
		S-6	20-22	24	18	14 15 17 16	02	S-6: Dense, light brown, fine to coarse SAND and GRAVEL, little Silt,					
						17 16		moist.			22'		247.0'
-								Bottom of boring at 22 feet.	3				211.0
-	-												
_													
25													
	1												
-	†												
-	-												
_													
30	1												

1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16, 2024.
Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a Honeywell MiniRAE3000 meter

equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).

3. Boring terminated at 22 feet below ground surface (bgs). Upon completion, the borehole was backfilled with soil cuttings to ground surface.

REMARKS

174955.30 COMMONWEALTH FUSION SYSTEMS.GPJ; STRATUM ONLY NORWOOD; 9/11/2025

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

Commonwealth Fusion Systems Proposed CFS-4 Development Hospital Road Devens, MA

BORING NO.: GZ-127 SHEET: 1 of 1 PROJECT NO: 01.0174955.30 REVIEWED BY: MJO

Drilling Co.: New England Boring Contractors

Type of Rig: ATV Foreman: Manlea Thompson Rig Model: D-70 Turbo

Ground Surface Elev. (ft.): 269 Final Boring Depth (ft.): 22

Boring Location: See Plan

H. Datum: See Plan V. Datum: See Plan

Logged By: Kyran Peters

Drilling Method: HSA

Date Start - Finish: 9/2/2025 - 9/2/2025

Groundwater Depth (ft.)

Auger/Casing Type: HSA I.D/O.D.(in): 3.25/6.625 Hammer Weight (lb.): 140 Hammer Fall (in.): 30

Sampler Type: Split Spoon I.D./O.D. (in.): 1.375/2 Sampler Hmr Wt (lb): 140 lbs Sampler Hmr Fall (in): 30" Autohammer

Stab. Time Casing Date Time Water Depth 9/2/25 1145 Dry (22') 20 min

Other:	ιιαιι (Δι	 utoham	omer			Othe		Autohammer				+	
	Casing	atoriari		Samp	مام	Othe			 ×	T: - I-I	 		
Depth (ft)	Blows/ Core Rate	No.	Depth (ft.)			Blows (per 6 in.)	SPT Value	Sample Description and Identification (Modified Burmister Procedure)	Remark	Field Test Data	Depth (ft.)	Stratum Description	Elev.
-	rato	S-1	0-1.8	21	15	5 12 19 50/3"	31	S-1: (Top 3"): Brown, fine to medium SAND, some Silt, trace Roots, dry.	1	5.2	1.8'	TOPSOIL FILL	268.
- - -		S-2	3-5	24	16	6 6 8 8	14	(Bottom 12"): Very dense, light brown, fine to medium SAND, some Silt, little Gravel, dry. S-2: (Top 8"): Medium dense, light brown, fine to medium SAND and GRAVEL, little Silt, dry.	3	0.1		FILL SAND/GRAVEL	
5 _		S-3	5-7	24	17	5 6 7 8	13	(Bottom 8"): Medium dense, light brown, fine to coarse SAND and GRAVEL, trace Silt, dry. S-3: Medium dense, light brown, fine to medium SAND, trace (-) Silt, dry.		4.1	5'	SAND/GRAVEL	264
10 _		S-4	10-12	24	19	5 5 7 7	12	S-4: Medium dense, light brown, fine to medium SAND, trace (-) Silt, dry.		0.7		SAND	
15 _		S-5	15-17	24	21	5 6 6 7	12	S-5: Medium dense, light brown, fine to medium SAND, trace (-) Silt, damp. Observed iron oxide staining 13 inches from top of recovery.		ND			
20 _		S-6	20-22	24	24	3 3 4 4	7	S-6: Medium stiff, light brown, Clayey SILT, some fine to medium Sand, damp.		ND	18.5'	CLAYEY SILT	
								Bottom of boring at 22 feet.	4				
5 _													
-													
10													

1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16,

2024.

2 Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a Honeywell MiniRAE3000+ organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).

3 Possible boulder from 1.8 feet to 3 feet below ground surface (bgs). Advanced with auger to 3 feet bgs.

4. Boring terminated at 22 feet bgs after reaching target depth. Upon completion, the borehole was backfilled with soil cuttings to the ground surface.

174955.30 COMMONWEALTH FUSION SYSTEMS.GPJ; STRATUM ONLY NORWOOD; 9/11/2025 REMARKS

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

Commonwealth Fusion Systems Proposed CFS-4 Development Hospital Road Devens, MA

BORING NO.: GZ-128 SHEET: 1 of 1 PROJECT NO: 01.0174955.30

REVIEWED BY: MJO

8/20/2025 - 8/20/2025

Drilling Co.: New England Boring Contractors

Foreman: Manlea Thompson Logged By: Kyran Peters

Type of Rig: ATV Rig Model: D-70 Turbo Drilling Method: HSA

Boring Location: See Plan Ground Surface Elev. (ft.): 279.5 Final Boring Depth (ft.): 16

Date Start - Finish:

H. Datum: See Plan V. Datum: See Plan

Auger/Casing Type: HSA I.D/O.D.(in): 3.25/6.625 Hammer Weight (lb.): 140 Hammer Fall (in.): 30

Sampler Type: Split Spoon I.D./O.D. (in.): 1.375/2 Sampler Hmr Wt (lb): 140 lbs Sampler Hmr Fall (in): 30" Autohammer

Groundwater Depth (ft.) Stab. Time Casing Date Time Water Depth 8/20/25 0915 Dry (16') 5 min

Hamn	ner Fall (in.):	30			Samp	ler Hmr	Fall (in): 30"							
Other		utoham	mer			Othe	r:	Autohammer							
	Casing			Samp	le			0	-1 1 -1 41 - 1 41		ark	Field	٦.	Stratum	
Depth (ft)	Blows/ Core Rate	No.	Depth (ft.)	Pen. (in)	Rec. (in)	Blows (per 6 in.)	SPT Value	Sample Description an (Modified Burmister	d Identification Procedure)	on	Remark	Test Data	Depth (ft.)	Description	Elev. (ft.)
	rtato	S-1	0-2	24	6	9 25	38	S-1: Medium dense, light brown, fine to	coarse SAND,	some Silt, little	_	7.0			
-						13 9		Gravel, moist.			1	'.0			
												6.1			
		S-2	2-4	24	5	8 9	19	S-2: Medium dense, brown, fine to coar	se SAND, some	e Silt, little	2	0.1		TOPSOIL	
-						10 10		Gravel, trace Roots, moist.							
_															
5													4.5'		275.0'
-		S-3	5-7	24	7	3 2	4	S-3: Loose, brown to light brown, fine to	coarse SAND,	some Gravel,		5.2			
-						2 2		little Silt, moist.							
_												5.7			
		S-4	7-9	24	7	5 4	9	S-4: Loose, light brown, fine to coarse S	SAND and GRA	VEL, little Silt,		0			
-						5 6		moist.							
_														FILL	
10												5.4		I ILL	
		S-5	10-12	24	13	5 5	13	S-5: Medium dense, light brown, fine to	coarse SAND a	and GRAVEL,		3.4			
-						8 12		trace Silt, moist.							
_							07					5.7			
		S-6	12-14	24	16	13 13	27	S-6: Medium dense, light brown, fine to	coarse SAND a	and GRAVEL,					
-						14 14		trace Silt, moist.							
-		S-7	14-16	24	18	14 12	24	S-7: Medium dense, light brown, fine to	medium SAND	trace (-) Silt		5.5	14'		265.5'
15 _		0-1	14-10		10	12 12		dry.	medium oAND	, trace (-) Ont,				SAND	
						12 12		ury.					16'		263.5'
-								Bottom of boring a	t 16 feet.						
-															
_															
-															
20 _															
i															
-											3				
-															
_															
25 _															
_															
-															
-															
-															

1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16,

2024.
 Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a Honeywell MiniRAE3000+ organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).
 Borehole terminated at 16 feet below ground surface (bgs). Upon completion, the borehole was backfilled with soil cuttings.

174955.30 COMMONWEALTH FUSION SYSTEMS.GPJ; STRATUM ONLY NORWOOD; 9/11/2025

REMARKS

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

Commonwealth Fusion Systems Proposed CFS-4 Development Hospital Road Devens, MA

Split Spoon

BORING NO.: GZ-129 SHEET: 1 of 1 PROJECT NO: 01.0174955.30 REVIEWED BY: MJO

Dry (22')

Drilling Co.: New England Boring Contractors

Type of Rig: ATV Manlea Thompson Rig Model: D-70 Turbo Boring Location: See Plan Ground Surface Elev. (ft.): 281 Final Boring Depth (ft.): 22

H. Datum: See Plan V. Datum: See Plan

Logged By: Kvran Peters

Foreman:

Drilling Method: HSA Sampler Type:

Date Start - Finish: 8/20/2025 - 8/20/2025

Date

8/20/25

Time

1310

Groundwater Depth (ft.) Casing Stab. Time Water Depth

20 min

Auger/Casing Type: **HSA** I.D/O.D.(in): 3.25/6.625 Hammer Weight (lb.): 140 Hammer Fall (in.): 30 Autohammer Other

I.D./O.D. (in.): 1.375/2 Sampler Hmr Wt (Ib): 140 lbs Sampler Hmr Fall (in): 30" Other: Autohammer

Casing Sample Field Stratum Remar Blows Sample Description and Identification Depth Depth Pen. Rec. **Blows** SPT Test \equiv Description Core No. (Modified Burmister Procedure) (ft.) (in) (in) (per 6 in.) Value Data Rate S-1: (Top 1"): Dark brown, fine to coarse SAND, some Silt, trace S-1 0-2 24 6 14 19 3.1 Roots, dry. 16 15 1 (Bottom 18"): Dense, light brown to brown, fine to coarse SAND, 2.6 35 2 24 17 19 17 S-2 2-4 some Gravel, little Silt, dry. 18 21 S-2: Dense, light brown to brown, fine to coarse SAND and GRAVEL, little Silt, moist. 5 5.6 9 S-3: Dense, light brown, fine to coarse SAND and GRAVEL, little Silt, FILL S-3 5-7 24 9 14 19 22 moist. 10 5.6 10.5' S-4 10-12 24 10 4 2 S-4: (Top 6"): Loose, light brown, fine to coarse SAND, some Gravel, 270.5 4 5 (Bottom 4"): Loose, dark brown fine to coarse SAND, some Gravel, 7.2 S-5 12-14 24 20 5 7 some Silt. moist 9 10 BURIED TOPSOIL S-5: Medium dense, dark brown, fine to coarse SAND, some Gravel, some Silt. moist. 15 8.8 37 S-6 15-17 24 19 10 20 S-6: (Top 9"): Dark brown, fine to coarse SAND, some Gravel, some 15.8 265.2 17 17 Silt. moist (Bottom 10"): Light brown, fine to coarse SAND, little Gravel, trace 5.9 29 17-19 24 14 17 14 Silt. drv 15 15 S-7: Medium dense, light brown, fine to coarse SAND and GRAVEL, SAND/GRAVEL trace Silt, dry. 20 5.8 18 24 16 S-8 20-22 10 8 S-8: Medium dense, light brown, fine to coarse SAND and GRAVEL, trace Silt, dry. 10 14 3 259.0 Bottom of boring at 22 feet. 25 30

1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16,

Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a Honeywell MiniRAE3000+ organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).

3. Borehole terminated at 22 feet below ground surface (bgs). Upon completion, the borehole was backfilled with soil cuttings.

REMARKS

74955.30 COMMONWEALTH FUSION SYSTEMS.GPJ; STRATUM ONLY NORWOOD; 9/11/2025

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made

Commonwealth Fusion Systems Proposed CFS-4 Development Hospital Road Devens, MA

BORING NO.: GZ-130 SHEET: 1 of 1 PROJECT NO: 01.0174955.30

REVIEWED BY: MJO

8/20/2025 - 8/21/2025

Drilling Co.: New England Boring Contractors

Foreman: Manlea Thompson Logged By: Kyran Peters

Type of Rig: ATV Rig Model: D-70 Turbo

Drilling Method: HSA

Boring Location: See Plan Ground Surface Elev. (ft.): 270 Final Boring Depth (ft.): 19

Date Start - Finish:

V. Datum: See Plan

H. Datum: See Plan

Auger/Casing Type: HSA I.D/O.D.(in): 3.25/6.625 Hammer Weight (lb.): 140 Hammer Fall (in.): 30

Sampler Type: Split Spoon I.D./O.D. (in.): 1.375/2 Sampler Hmr Wt (lb): 140 lbs Sampler Hmr Fall (in): 30" Autohammer

Groundwater Depth (ft.) Casing Stab. Time Date Time Water Depth 8/21/25 0855 Dry (19') 30 min

Other:	: A	ııı.). utohan	nmer			Other		Autohammer			+		
	Casing Blows/ Core	No.		Samp Pen.	Rec.	Blows (per 6 in.)	SPT Value	Sample Description and Identification (Modified Burmister Procedure)	Remark	Field Test Data	Depth (ft.)	Stratum Description	Elev. (ft.)
- - -	Rate		(11.)	()	()	(por 0 iii.)	Value		1 2	Bata			
5 _ -		S-1	5-7	24	19	6 5 4 7	9	S-1: Loose, dark brown, fine to coarse SAND, some Silt, little Gravel, trace Wood, moist.		7.3			
-		S-2	7-9	24	20	10 10 9 7	19	S-2: Medium dense, dark brown, fine to coarse SAND, some Gravel, some Silt, trace Wood, damp.		5.8		TOPSOIL	
10 _		S-3	10-12	24	24	9 10 10 13	20	S-3: Medium dense, dark brown, fine to coarse SAND, some Gravel, some Silt, trace Wood, damp.		5.5			
-		S-4	12-14	24	22	17 20 23 20	43	S-4: Dense, dark brown, fine to coarse SAND, some Gravel, some Silt, trace Wood, damp.		5.8			
15 _		S-5	15-17	24	18	9 12 16 20	28	S-5: (Top 15"): Medium dense, dark brown, fine to coarse SAND, some Gravel, some Silt, trace Wood, damp.		5.4	16.3'		253.7"
-		S-6	17-19	24	17	22 24 28 28	52	(Bottom 3"): Light brown, fine to coarse SAND, some Gravel, trace Silt, dry. S-6: (Top 11"): Very dense, brown, fine to coarse SAND and		5.0	18'	FILL SAND/GRAVEL	252.0° 251.0°
20 _								GRAVEL, little Silt, damp. (Bottom 6"): Brown, fine to coarse SAND and GRAVEL, little Silt, dry. Bottom of boring at 19 feet.	3				
25 _													
30													

1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16,

2024.
 2. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a Honeywell MiniRAE3000+ organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).
 3. Borehole terminated at 19 feet below ground surface (bgs). Upon completion, the borehole was backfilled with soil cuttings.

174955.30 COMMONWEALTH FUSION SYSTEMS.GPJ; STRATUM ONLY NORWOOD; 9/11/2025 REMARKS

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

30

Commonwealth Fusion Systems Proposed CFS-4 Development Hospital Road Devens, MA

BORING NO.: GZ-131 SHEET: 1 of 1 PROJECT NO: 01.0174955.30

REVIEWED BY: MJO

8/21/2025 - 8/21/2025

Drilling Co.: New England Boring Contractors

Foreman: Manlea Thompson Kyran Peters

Type of Rig: ATV Rig Model: D-70 Turbo

Drilling Method: HSA

Boring Location: See Plan Ground Surface Elev. (ft.): 272 Final Boring Depth (ft.): 19

Date Start - Finish:

H. Datum: See Plan V. Datum: See Plan

Auger/Casing Type: HSA I.D/O.D.(in): 3.25/6.625 Hammer Weight (lb.): 140

Autohammer

Logged By:

Hammer Fall (in.):

Other:

Sampler Type: Split Spoon I.D./O.D. (in.): 1.375/2 Sampler Hmr Wt (lb): 140 lbs Sampler Hmr Fall (in): 30" Autohammer

Groundwater Depth (ft.) Stab. Time Casing Date Time Water Depth 8/21/25 1133 Dry (19') 20 min

Other		utonan	IIIICI			Other		Adolamilo					
	Casing			Samp	le				꽃	Field	ے ا	Stratum	
Depth (ft)	Blows/ Core Rate	No.	Depth (ft.)	Pen.	Rec. (in)	Blows (per 6 in.)	SPT Value	Sample Description and Identification (Modified Burmister Procedure)	Remark	Test Data	Depth (ft.)	Description	Elev (ff.)
-						7			1 2 3				
5 _ -	-	S-1	5-7	24	19	9 11 13 11	24	S-1: Medium dense, dark brown to light brown, fine to coarse SAND, some Gravel, some Silt, trace Wood, damp.		6.2			
- - -		S-2	7-9	24	19	19 22 19 14	41	S-2: Dense, dark brown, fine to coarse SAND, some Gravel, some Silt, trace Wood, damp.		4.4		TOPSOIL	
10 _	-	S-3	10-12	24	17	12 10 9 9	19	S-3: Medium dense, dark brown, fine to coarse SAND and GRAVEL, some Silt, trace Wood, damp.		5.6			
- - -		S-4	12-14	24	20	14 21 15 8	36	S-4: Dense, dark brown, fine to coarse SAND and GRAVEL, some Silt.		6.0			
15 _ -		S-5	15-17	24	22	8 9 12 13	21	S-5: (Top 14"): Medium dense, dark brown, fine to coarse SAND and GRAVEL, some Silt, trace Wood, damp.		3.3	16.25'		255.8'
-		S-6	17-19	24	21	15 12 12 11	24	(Bottom 8"): Light brown, fine to coarse SAND, little Gravel, trace Silt, damp. S-6: (Top 13"): Medium dense, light brown, fine to coarse SAND and		4.7	18.25'	POSSIBLE FILL	253.8' 253.0'
20 _								GRAVEL, little Silt, trace (-) Roots, damp. (Bottom 8"): Light brown, fine to coarse SAND, trace Gravel, trace (-) Silt, dry.	4		10		200.0
-								Bottom of boring at 19 feet.					
25 _	-												
-													
30													

1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16,

2024. As drilled location 9 feet west of stake.

2. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a Honeywell MiniRAE3000+ organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).

3. Advanced boring to 5 feet below ground surface (bgs) with auger prior to sampling.

4. Boring terminated at 19 feet below ground surface (bgs) after reaching target depth. Upon completion, borehole was backfilled with soil cuttings to the ground surface.

174955.30 COMMONWEALTH FUSION SYSTEMS.GPJ; STRATUM ONLY NORWOOD; 9/11/2025 REMARKS

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

Commonwealth Fusion Systems Proposed CFS-4 Development Hospital Road Devens, MA

BORING NO.: GZ-132 SHEET: 1 of 1 PROJECT NO: 01.0174955.30

REVIEWED BY: MJO

8/21/2025 - 8/21/2025

Time

1340

Drilling Co.: New England Boring Contractors

3.25/6.625

140

30

Foreman: Manlea Thompson Type of Rig: ATV Rig Model: D-70 Turbo

Drilling Method: HSA

Boring Location: See Plan Ground Surface Elev. (ft.): 268.5 Final Boring Depth (ft.): 19

Date

8/21/25

Date Start - Finish:

V. Datum: See Plan

Dry (16')

H. Datum: See Plan

Logged By: Kyran Peters Auger/Casing Type: HSA

Hammer Weight (lb.):

Hammer Fall (in.):

I.D/O.D.(in):

Sampler Type: Split Spoon I.D./O.D. (in.): 1.375/2 Sampler Hmr Wt (lb): 140 lbs Sampler Hmr Fall (in): 30"

Groundwater Depth (ft.) Casing Stab. Time Water Depth

30 min

Other	: A	utoham	mer			Other	:	Autohammer							
Depth (ft)	Casing Blows/ Core Rate	No.	Depth (ft.)	Pen. (in)	Rec.	Blows (per 6 in.)	SPT Value	Sample Description and (Modified Burmister	d Identification Procedure)	1	Remark	Field Test Data	Depth (ft.)	Stratum Description	Elev. (ft.)
-											1 2 3				
5		S-1	5-7	24	17	2 2 4 8	6	S-1: Loose, dark brown, fine to coarse S Silt, trace Wood, damp.	SAND, some Grav	/el, some		7.3			
-		S-2	7-9	24	15	14 16 30 22	46	S-2: Dense, dark brown, fine to coarse S Silt, trace Wood, damp.	SAND and GRAV	EL, some		7.4		TOPSOIL	
10		S-3	10-12	24	19	10 11 11 9	22	S-3: Medium dense, dark brown, fine to some Silt, trace Wood, damp.	coarse SAND and	d GRAVEL,		5.7			
-		S-4	12-14	24	19	15 33 20 16	53	S-4: Very dense, dark brown, fine to coa some Silt, trace Wood, damp.	irse SAND and G	RAVEL,		6.8	14.5'		254.0'
15		S-5	15-17	24	20	7 10 10 9	20	S-5: Medium dense, light brown, fine to trace Silt, dry.	coarse SAND, so	ome Gravel,		5.7	14.5	SAND/GRAVEL	254.0
-		S-6	17-19	24	14	9 12 11 10	23	S-6: Medium dense. light brown, fine to trace (-) Silt, dry.		ile Gravel,		5.5	19'	SAND/GRAVEL	249.5'
20								Bottom of boring at	i 19 feet.		4				
25															

1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16,

2024. As drilled location 9 feet west of stake.

2. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a Honeywell MiniRAE3000+ organic vapor meter equipped with a photoionization detector (PID) and 10.6eV lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv).

3. Advanced boring to 5 feet below ground surface (bgs) with auger prior to sampling.

4. Boring terminated at 19 feet below ground surface (bgs) after reaching target depth. Upon completion, borehole was backfilled with soil cuttings to the ground surface.

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

Boring No.: GZ-132

174955.30 COMMONWEALTH FUSION SYSTEMS.GPJ; STRATUM ONLY NORWOOD; 9/11/2025

30

REMARKS

GZA GeoEnvironmental, Inc. Engineers and Scientists

Commonwealth Fusion Systems Proposed CFS-4 Development Hospital Road Devens, MA

BORING NO.: GZ-133 SHEET: 1 of 1 PROJECT NO: 01.0174955.30

REVIEWED BY: MJO

Drilling Co.: New England Boring Contractors

Foreman: Manlea Thompson Type of Rig: ATV Rig Model: D-70 Turbo Drilling Method: HSA

Boring Location: See Plan Ground Surface Elev. (ft.): 266 Final Boring Depth (ft.): 12 Date Start - Finish: 8/21/2025 - 8/21/2025

Date

8/21/25

H. Datum: See Plan V. Datum: See Plan

Auger/Casing Type: HSA I.D/O.D.(in): 3.25/6.625 Hammer Weight (lb.): 140 Hammer Fall (in.): 30

Logged By: Kyran Peters

Sampler Type: Split Spoon I.D./O.D. (in.): 1.375/2 Sampler Hmr Wt (lb): 140 lbs Sampler Hmr Fall (in): 30" Δutohammer

Groundwater Depth (ft.) Stab. Time Casing Time Water Depth 1500 Dry (12') 10 min

Other:	Α	utohan				Other	:	Autohammer							
	Casing			Şamp	le			Cample Description on	d Idontificati		ark	Field	₽.	Stratum	٠
Depth (ft)	Blows/ Core Rate	No.	Depth (ft.)	Pen. (in)	Rec. (in)	Blows (per 6 in.)	SPT Value	Sample Description an (Modified Burmister	Procedure)	OH	Remark	Test Data	Depi (ft.)	Stratum Description	Elev. (ft.)
											1				
											2				
											3			FILL	
5 _											4	4.0			
		S-1	5-7	24	13	2 4 6 8	10	S-1: Medium dense, light brown, fine to little Silt, dry.	coarse SAND a	and GRAVEL,		1.0			
						0.8		iitue Siit, dry.					7'		259.0
10 _							•					4.9		SAND	
		S-2	10-12	24	18	3 4 5 5	9	S-2: Loose, light brown, fine to medium	SAND, trace (-) Silt, dry.		1.0			
						3 3							12'		254.0
								Bottom of boring a	t 12 feet.						
15 _															
20 _											5				
1															
25 _															
1															
1															
1															
30															

1. Ground surface elevation estimated from topography depicted on an AutoCAD file prepared by VHB titled "CFS Composite Existing Surface -polylines," transmitted to GZA on September 16, 2024. As drilled location 9 feet west of stake.

2. Field testing results represent total organic vapor levels, referenced to a benzene standard, measured in the headspace of sealed soil sample jars using a Honeywell MiniRAE3000+ organic

vapor meter equipped with a photoionization detector (PID) and 10.66V lamp. Results in parts per million by volume (ppmv). ND indicates nothing detected (<0.1 ppmv). Advanced boring to 5 feet below ground surface (bgs) with auger prior to sampling. Driller noted lower resistance advancing augers 7 to 10 feet below ground surface, possible indicating a change in stratum. Boring terminated at 12 feet below ground surface (bgs) after reaching target depth. Upon completion, borehole was backfilled with soil cuttings to the ground surface.

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

Boring No.: GZ-133

174955.30 COMMONWEALTH FUSION SYSTEMS.GPJ; STRATUM ONLY NORWOOD; 9/11/2025

REMARKS

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 T: 781.278.3700 F: 781.278.5701 F: 781.278.5702 www.gza.com

APPENDIX C

RELEVANT PREVIOUS (2020 & 2024) AND RECENT (2025)

LABORATORY TEST RESULTS

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 T: 781.278.3700 F: 781.278.5701 F: 781.278.5702 www.gza.com

APPENDIX C.1

2020 TRC GEOTECHNICAL LABORATORY TEST RESULTS

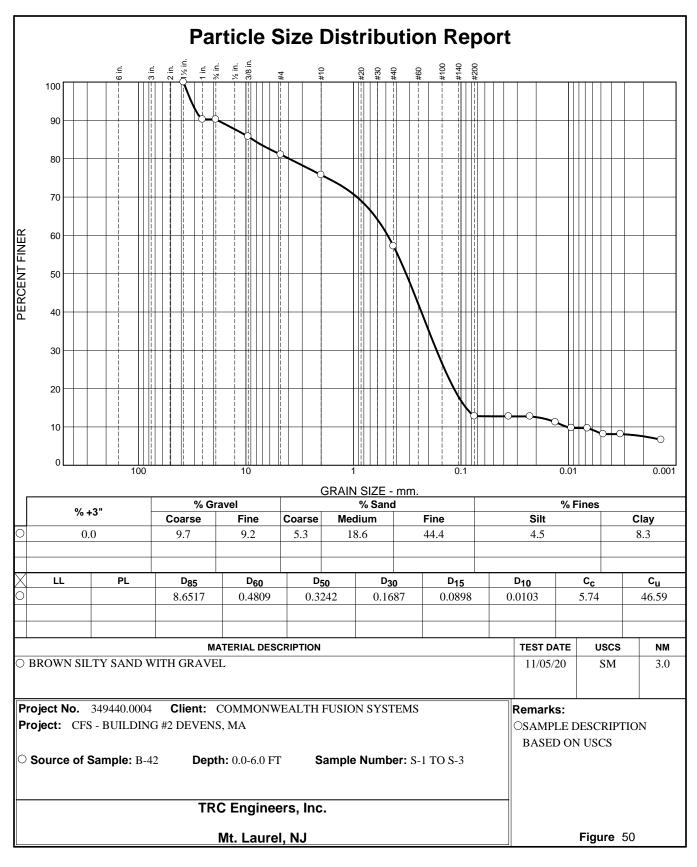
Project Name: CFS – Building #2

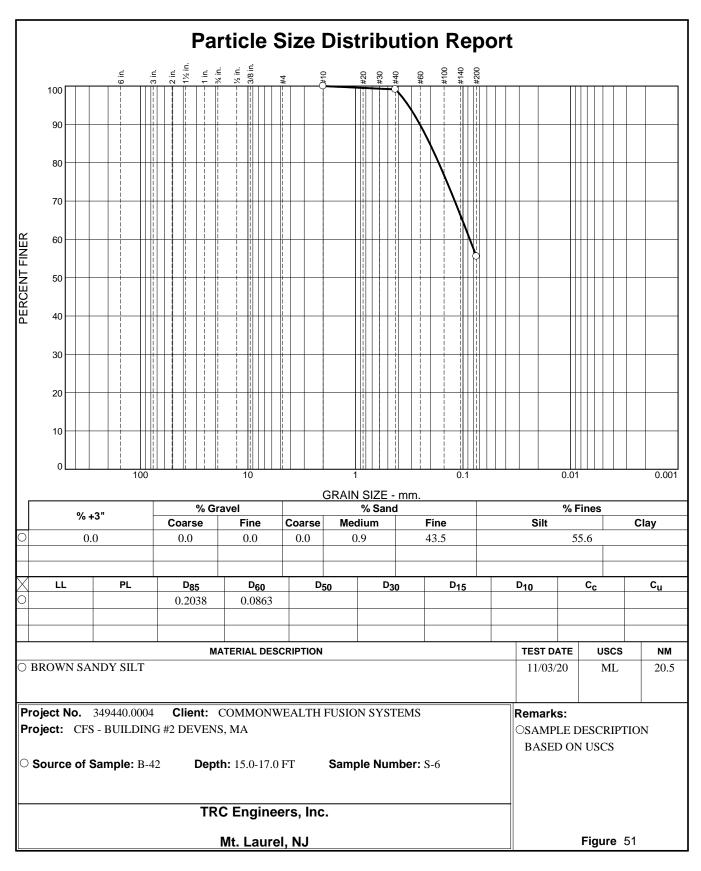
Client Name: **Commonwealth Fusion Systems**

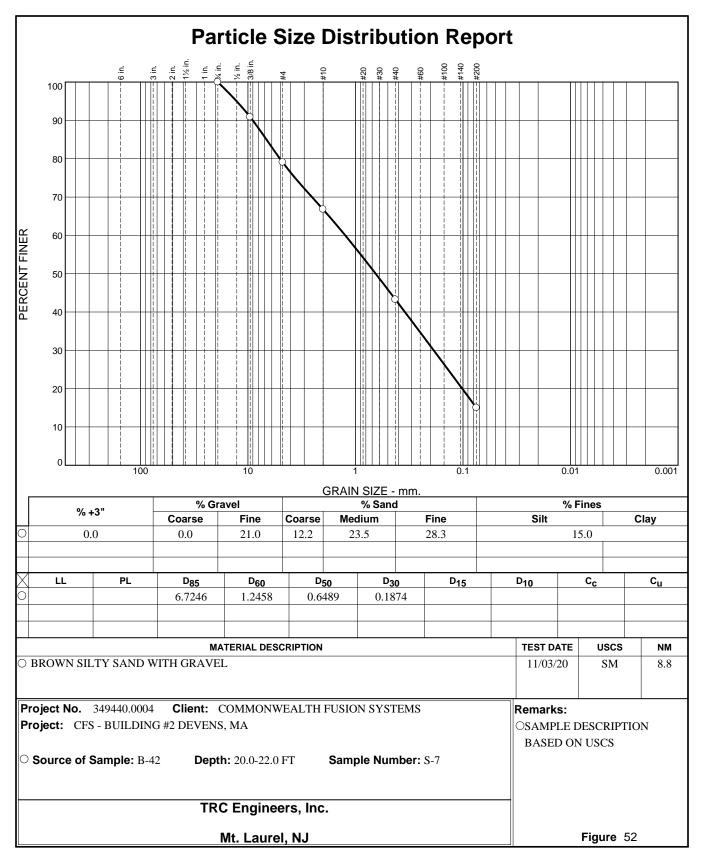
TRC Project #: 349440.0004

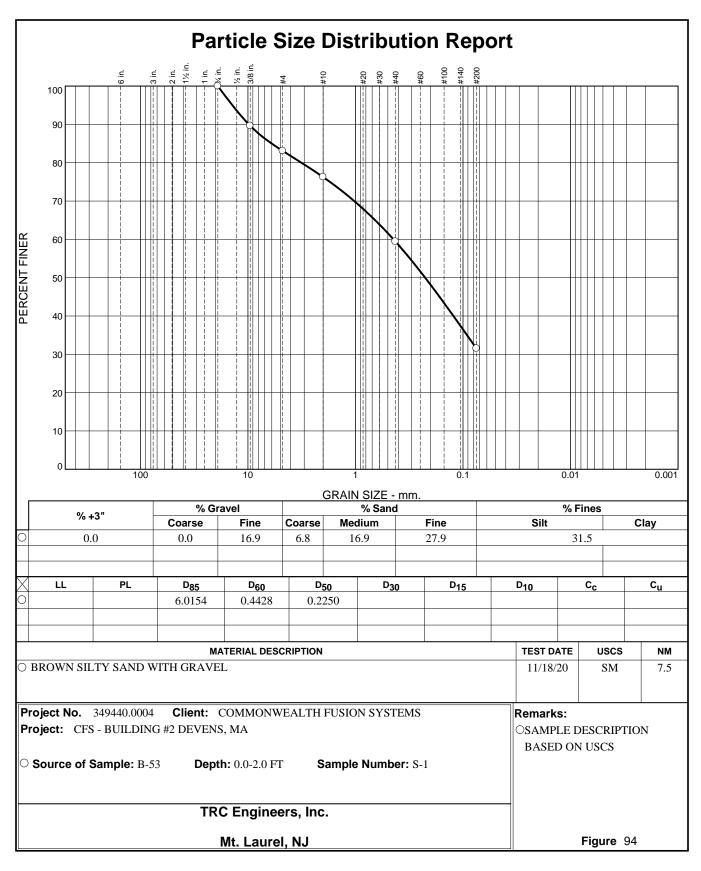
SAI	MPLE IDENTIFIC	CATION	MBOL)	t (%)	GRAIN	SIZE DI	STRIBUT	ION		PLAS	STICITY		insity	ē	CALIFO BEAF CAPA	RING	(%)
Boring #	Sample #	Depth (ft)	USCS (GROUP SYMBOL)	Moisture Content (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Liquidity Index (%)	Maximum Dry Density (pcf)	Optimum Moisture Content (%)	Percent Compaction (%)	CBR (%) at 0.10 in.	Organic Content (%)
B-41	S-6 to S-7	15.0-27.0	SM	9.1	24.4	65.0	10	.6	-	ı	-	ı	ı	-	-	-	-
B-42	S-1 to S-3	0.0-6.0	SM	3.0	18.9	68.3	4.5	8.3	-	-	-	1	-	-	-	-	-
B-42	S-6	15.0-17.0	ML	20.5	0.0	44.4	55	.6	-	-	-	-	-	-	-	-	-
B-42	S-7	20.0-22.0	SM	8.8	21.0	64.0	15	.0	-	-	-	-	-	-	-	-	-
B-43	S-1 to S-4	0.8-0.0	SM	3.4	30.5	50.9	14.8	3.8	-	-	-	-	-	-	-	-	-
B-43	S-5	8.0-10.0	SM	10.3	2.0	55.9	38.2	3.9	NP	NP	NP	-	-	-	-	-	-
B-43	S-6 to S-9	15.0-32.0	SP-SM	14.8	7.4	82.5	10	.1	-	-	-	-	-	-	-	-	-
B-44	S-1 to S-3	0.0-6.0	SM	2.8	21.7	59.8	10.2	8.3	-	-	-	-	-	-	-	-	-
B-44	S-4	6.0-8.0	SW-SM	3.7	21.1	70.1	8.	8	-	1	-	1	-	-	-	-	-

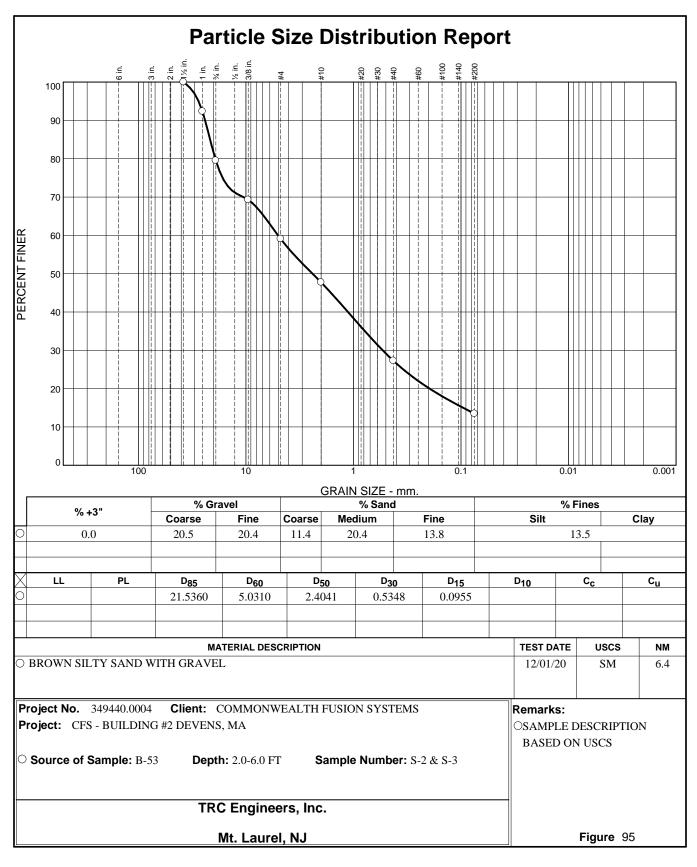
DRAWN BY: TBT 04/01/21 CHECKED BY: JPB 04/01/21

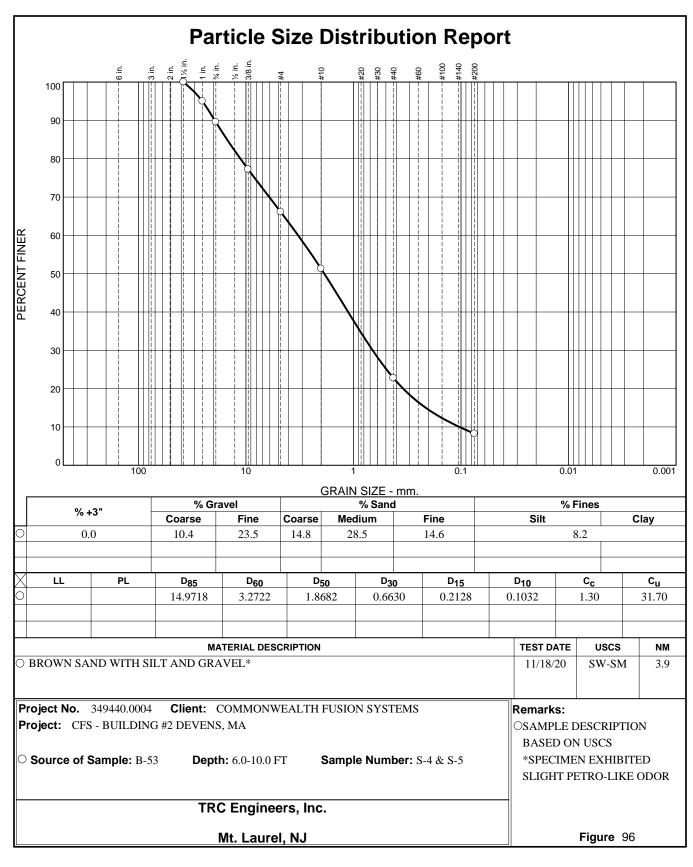

Project Name: CFS – Building #2

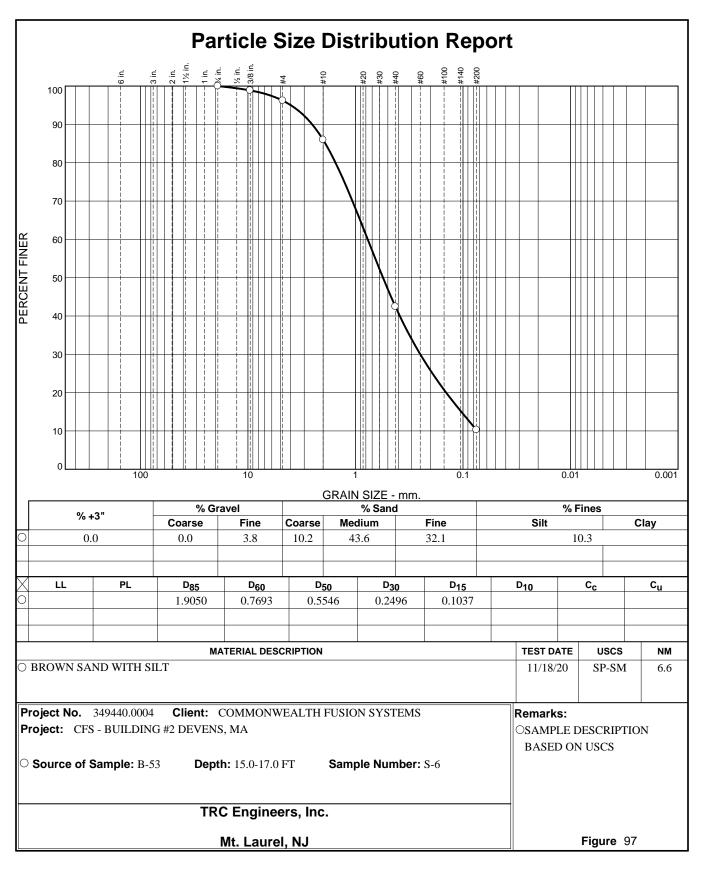

Client Name: **Commonwealth Fusion Systems**

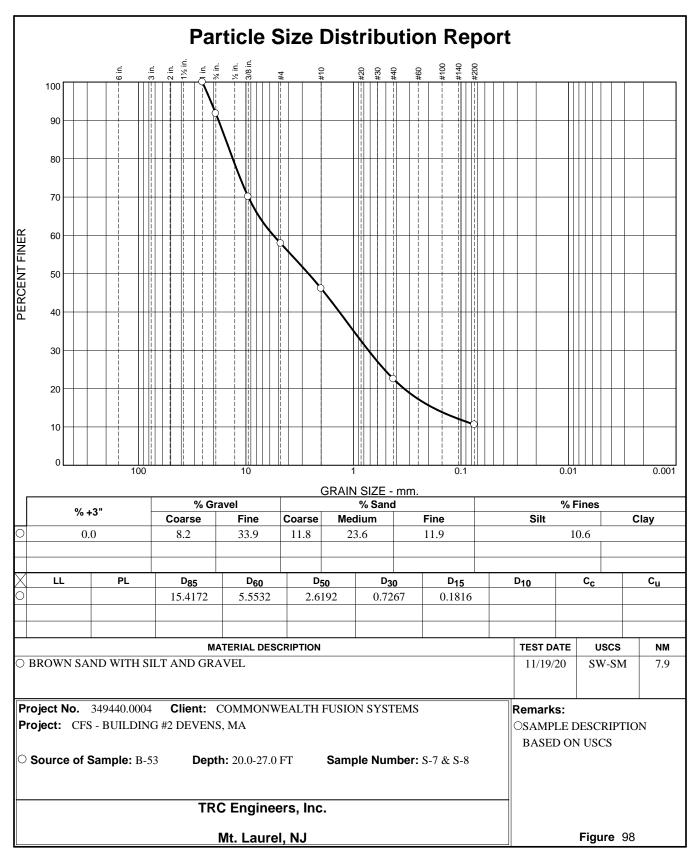

TRC Project #: 349440.0004

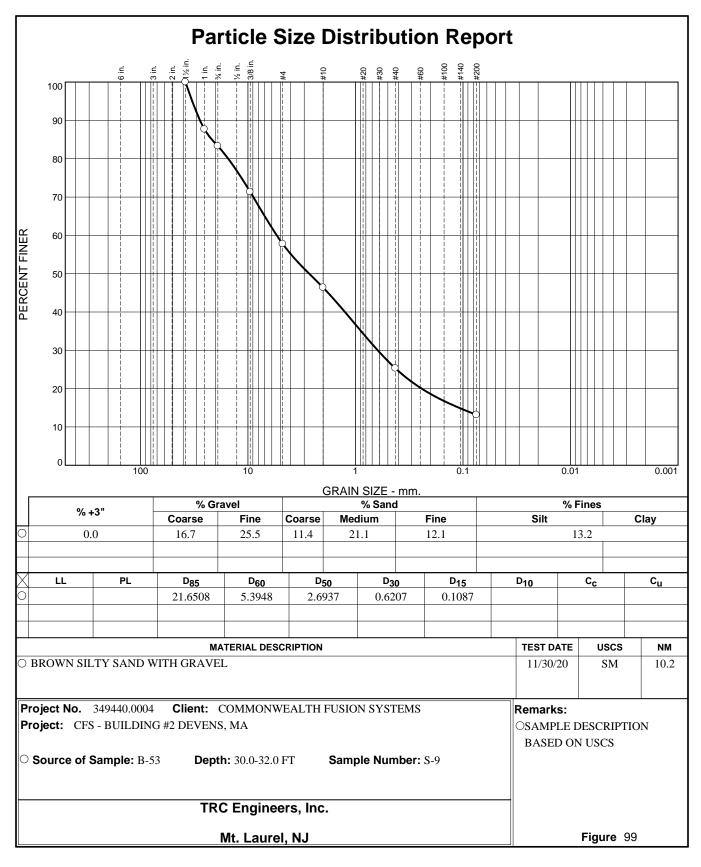

SAI	MPLE IDENTIFIC	CATION	MBOL)	t (%)	GRAIN	SIZE DI	STRIBUT	ION		PLAS	STICITY		insity	อ	CALIFO BEAF CAPA	RING	(%)
Boring #	Sample #	Depth (ft)	USCS (GROUP SYMBOL)	Moisture Content (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Liquidity Index (%)	Maximum Dry Density (pcf)	Optimum Moisture Content (%)	Percent Compaction (%)	CBR (%) at 0.10 in.	Organic Content (%)
B-53	S-1	0.0-2.0	SM	7.5	16.9	51.6	31	.5	ı	-	-	-	-	-	-	-	-
B-53	S-2 & S-3	2.0-6.0	SM	6.4	40.9	45.6	13	.5	1	-	-	-	-	-	-	-	-
B-53	S-4 & S-5	6.0-10.0	SW-SM	3.9	33.9	57.9	8.	2	-	-	-	-	-	-	-	-	-
B-53	S-6	15.0-17.0	SP-SM	6.6	3.8	85.9	10	.3	-	-	-	-	-	-	-	-	-
B-53	S-7 & S-8	20.0-27.0	SW-SM	7.9	42.1	47.3	10	.6	-	-	-	-	-	-	-	-	-
B-53	S-9	30.0-32.0	SM	10.2	42.2	44.6	13	.2	-	-	-	-	-	-	-	-	-
B-53	S-10	35.0-37.0	SM	11.5	14.4	50.0	35	.6	-	-	-	-	-	-	-	-	-
B-53	S-11	40.0-42.0	SM	11.3	15.0	55.1	29	.9	-	-	-	-	-	-	-	-	-
B-54	S-1	0.0-2.0	SM	7.5	23.5	62.0	14	.5	-	-	-	-	-	-	-	-	-

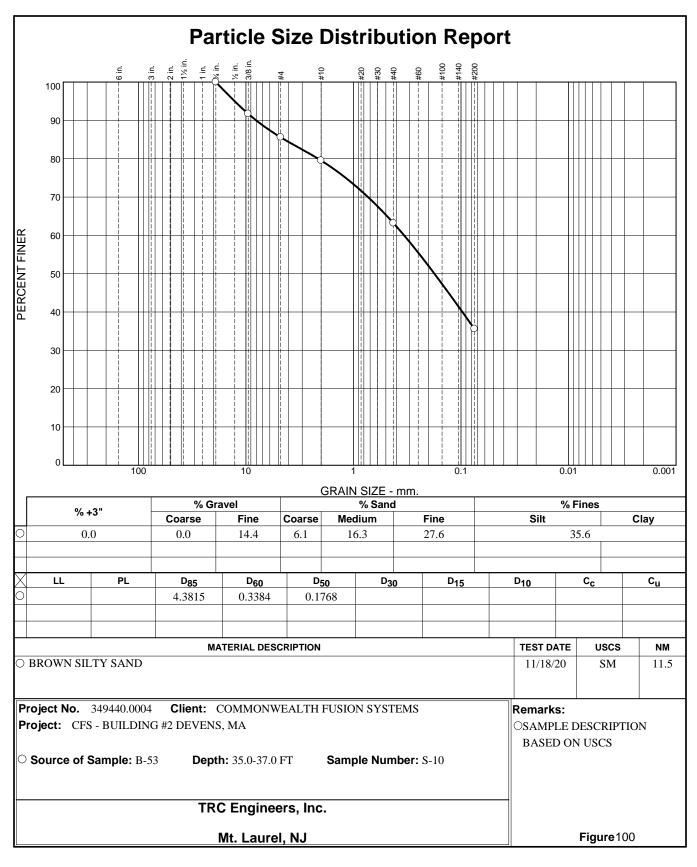

DRAWN BY: TBT 04/01/21 CHECKED BY: JPB 04/01/21

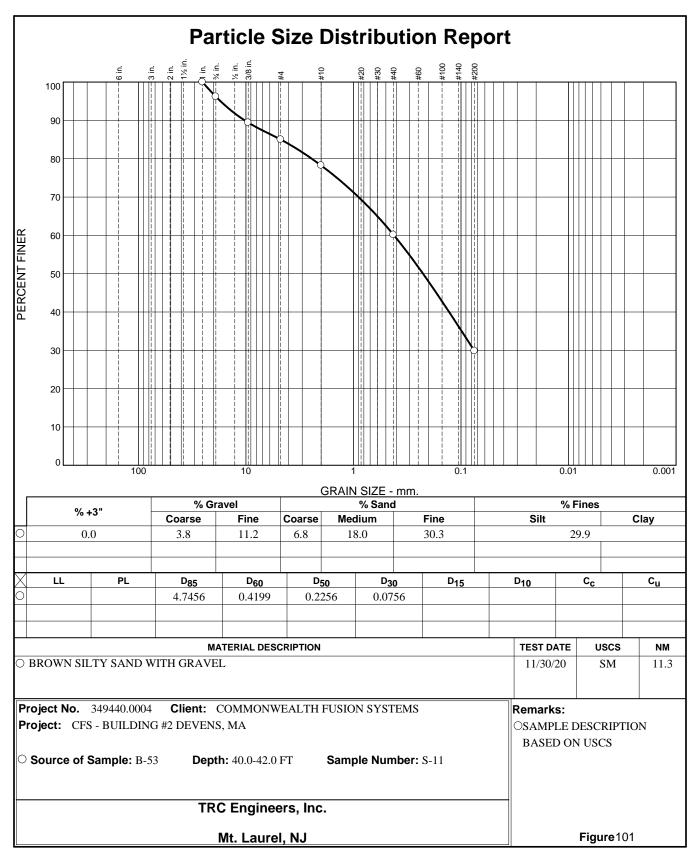












GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 T: 781.278.3700 F: 781.278.5701 F: 781.278.5702 www.gza.com

APPENDIX C.2

2024 GEOTECHNICAL LABORATORY TEST RESULTS

195 Frances Avenue Cranston RI, 02910 Phone: (401)-467-6454 Fax: (401)-467-2398 cts.thielsch.com Let's Build a Solid Foundation

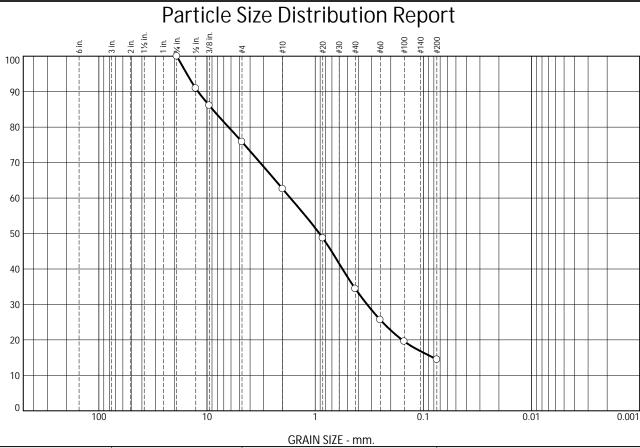
Client Information: GZA GeoEnvironmental Norwood, MA 781-603-5934

Project Contact: Collected By:

Michael Ostrowski

GZA

CFS-3 and Parking Lot 105 to 117 Hospital Road, Devens MA 01.0174955.20


Project Information:

Project Number: Summary Page: 1 of 1 Report Date: 26-Nov

LABORATORY TESTING DATA SHEET, Report No.: 7424-L-B025

				Identification Tests Corrosivity Tests															
Material Source	Sample ID	Depth (ft)	Laboratory No.	As Rcvd Moisture Content %	LL %	PL %	Gravel %	Sand %	Fines %	Org. %	Resistivity (Mohms-cm)	Chloride (mg/kg)			Redox Potential (mv)	рН	Electrical Resist. As Rcvd Ohm-cm @ 60°F	Electrical Resist. Saturated Ohm-cm @ 60°F	Laboratory Log and Soil Description
				D2216	D4	318		D6913		D2974	EPA	D43	327	EPA	G200	G51	G	187	
TP-212	S-5	5.5	24-S-B1674				36.9	58.7	4.4										Brown f-c SAND and f-c GRAVEL, trace Silt
TP-213	S-1	5.1	24-S-B1675				43.4	50.2	6.4										Brown f-c SAND and f-c GRAVEL, trace Silt
TP-204	S-3	2.5-4	24-S-B1676				15.4	74.0	10.6										Brown f-c SAND, little fine Gravel, little Silt
GZ-3	S-3	4-6	24-S-B1677				33.0	55.3	11.7										Brown f-c SAND, some fine Gravel, little Silt
GZ-5	S-4	6-8	24-S-B1678				24.2	61.4	14.4										Brown f-c SAND, some fine Gravel, little Silt
GZ-8	S-2	2-4	24-S-B1679				4.4	88.8	6.8										Brown f-m SAND, trace Silt, trace fine Gravel
GZ-13	S-2	2-4	24-S-B1680				42.2	51.0	6.8										Brown f-c SAND and f-c GRAVEL, trace Silt

Date Received:	11/20/2024	Reviewed By:	Romble Le Blace	Date Reviewed:	11/26/2024
				•	

0/ .2"	% GI	avei		% Sand		% FINES		
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	0.0	24.2	13.2	28.2	20.0	14.4		

SIEVE SIZE	PERCENT	SPEC.*	PASS?
OR DIAMETER	FINER	PERCENT	(X=NO)
3/4"	100.0		
1/2"	90.9		
3/8"	86.1		
#4	75.8		
#10	62.6		
#20	48.7		
#40	34.4		
#60 #100	25.6 19.6		
#100 #200	14.4		
π200	14.4		
*			

	Soil Description	
Brown f-c SAND,	some fine Gravel, little	e Silt
DI	Atterberg Limits	D
PL= NP	LL= NŸ	PI= NP
	<u>Coefficients</u>	
D ₉₀ = 12.0867	$D_{85} = 8.8780$	D ₆₀ = 1.6959
D ₉₀ = 12.0867 D ₅₀ = 0.9141 D ₁₀ =	D ₈₅ = 8.8780 D ₃₀ = 0.3314 C ₁₁ =	D ₆₀ = 1.6959 D ₁₅ = 0.0811 C _C =
510-	4	oc_
USCS= SM	Classification AASHTO=	A 1 L
USCS= SM	AASHTU=	A-1-0
	<u>Remarks</u>	

Date: 11/25/2024

Client: GZA GeoEnvironmental Project: CFS-3 and Parking Lot

105 to 117 Hospital Road, Devens, MA

Cranston, RI 01.0174955.20 Figure 24-S-B1678 Project No:

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 T: 781.278.3700 F: 781.278.5701 F: 781.278.5702 www.gza.com

APPENDIX C.3

2025 GEOTECHNICAL LABORATORY TEST RESULTS

195 Frances Avenue Cranston RI, 02910 Phone: (401)-467-6454 Fax: (401)-467-2398 cts.thielsch.com Let's Build a Solid Foundation Client Information:
GZA GeoEnvironmental, Inc.
Norwood, MA
(781) 278-3700

Project Contact: Michael Ostrowski
Collected By: Kyran Peters

Project Information:
Proposed CFS-3
Devens, MA

Project Number: 01.0178186.00 Summary Page: 1 of 1 Report Date: 08.13.25

LABORATORY TESTING DATA SHEET, Report No.: 7425-H-B029

Identification Tests Proctor / CBR / Permeability Tests																					
Boring No.	Sample ID	Depth (ft)	Laboratory No.	As Rcvd Moisture Content %	LL %	PL %	OD LL	Gravel %	Sand %	Fines %	Org. %	рН	g _d <u>MAX (pcf)</u> W _{opt} (%)	g _d MAX (pcf) W _{opt} (%) (Corr.)	Dry unit wt. (pcf)	Test Moisture Content %	Target Test Setup as % of Proctor	CBR @ 0.1"	CBR @ 0.2"	Permeability cm/sec	Laboratory Log and Soil Description
				D2216	D4:	318			D6913		D2974	D4792	D1:	557							
TP-302	GS-4	5.5-6	25-S-B1665	11.1							5.1										Organic Content Only
TP-310	GS-1	4	25-S-B1666	13.0							2.9										Organic Content Only
TP-314	GS-2	14	25-S-B1667	16.3							4.9										Organic Content Only
				1	ı		l.			C	rganic C	Content t	ested by MA	08.12.25.	1	l			I	1	
	No Con Varons																				

Date Received:	08.08.25	Reviewed By:	Date Reviewed:	08.13.25

Date Received:

8/8/2025

195 Frances Avenue Cranston RI, 02910 Phone: (401)-467-6454 Fax: (401)-467-2398 cts.thielsch.com Let's Build a Solid Foundation

Client Information: GZA GeoEnvironmental, Inc. Norwood, MA (781) 278-3700

Project Contact: Michael Ostrowski Collected By: Kyran Peters Project Information:
Proposed CFS-3
Devens, MA

 Project Number:
 01.0178186.00

 Summary Page:
 1 of 1

 Report Date:
 08.13.25

Date Reviewed:

08.13.25

LABORATORY TESTING DATA SHEET, Report No.: 7425-H-B025

					Identification Tests Proctor / CBR / Permeability Tests																
Boring No.	Sample ID	Depth (ft)	Laboratory No.	As Rcvd Moisture Content %	LL %	PL %	OD LL	Gravel %	Sand %	Fines %	Org. %	рН	g _d MAX (pcf) W _{opt} (%)	g _d MAX (pcf) W _{opt} (%) (Corr.)	Dry unit wt. (pcf)	Test Moisture Content %	Target Test Setup as % of Proctor	CBR @ 0.1"	CBR @ 0.2"	Permeability cm/sec	Laboratory Log and Soil Description
				D2216	D43	318			D6913		D2974	D4792	D1	557		II.		I	1		
TP-301	GS-3	6-7	25-S-B1656					40.5	56.9	2.6											Brown poorly graded sand with gravel
TP-302	GS-5	7	25-S-B1657					0.0	89.5	10.5											Brown poorly graded sand with silt
TP-308	GS-3	13	25-S-B1658					60.5	38.7	0.8											Brown poorly graded gravel with sand
TP-305	GS-4	8	25-S-B1659					0.0	98.6	1.4											Brown poorly graded sand
ander Vanon																					

Reviewed By:

Thielsch Engineering Inc.

Client: GZA GeoEnvironmental, Inc. Project: Proposed CFS-3

Cranston, RI

Project No: 01.0178186.00 Figure 25-S-B1656

Project No:

01.0178186.00

Figure 25-S-B1657

Figure 25-S-B1658

Project No:

01.0178186.00

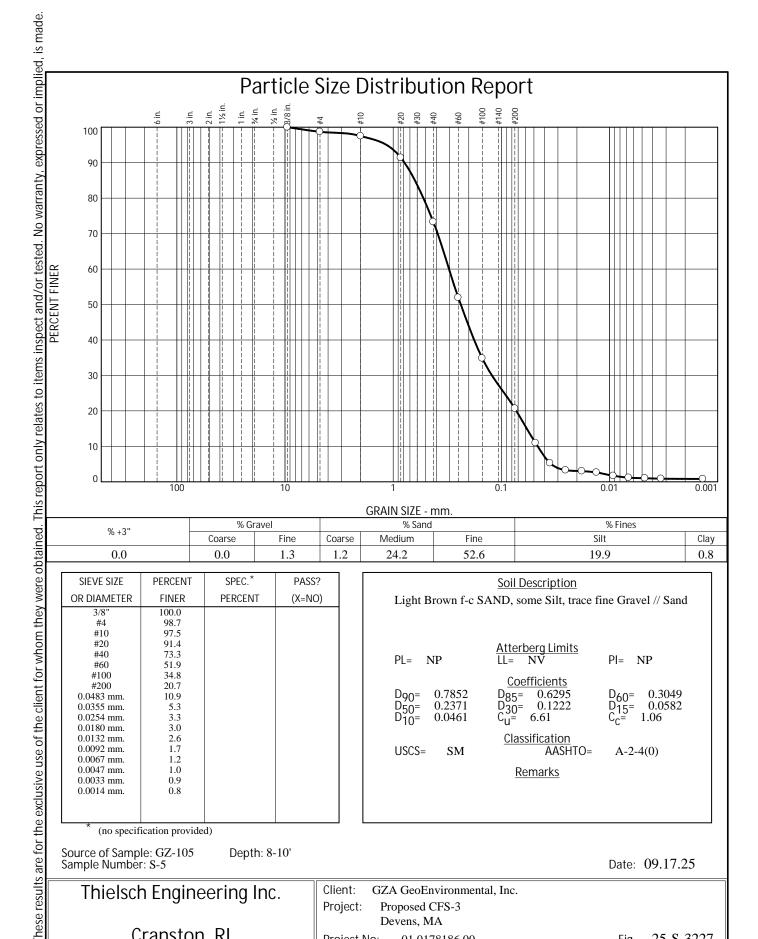
Cranston, RI

195 Frances Avenue Cranston RI, 02910 Phone: (401)-467-6454 Fax: (401)-467-2398 cts.thielsch.com Let's Build a Solid Foundation

Client Information: GZA GoEnvironmental, Inc. Norwood, MA 781-278-3700

Project Contact: Michael Ostrowski Collected By: Kyran Peters Project Information:
Proposed CFS-3
Devens, MA

 Project Number:
 1.0178186.000


 Summary Page:
 1 of 1

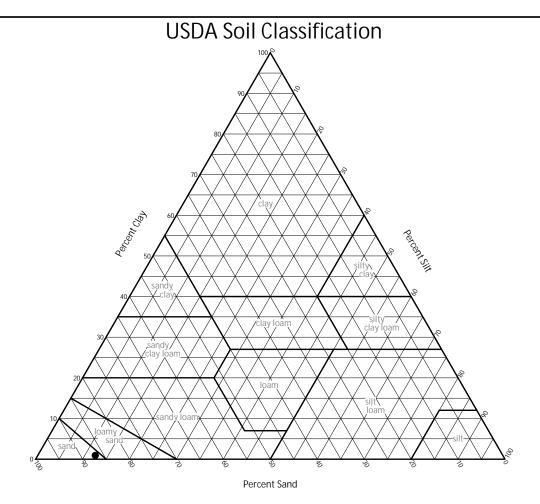
 Report Date:
 9/17/2025

LABORATORY TESTING DATA SHEET, Report No.: 7425-J-153, Rev 1

Identification Tests Proctor / CBR / Permeability Tests																					
Material Source	Sample ID	Depth (ft)	Laboratory No.	As Rcvd Moisture Content %	%	%	OD LL	Gravel %	%	Fines %	Org. %	рН	g _d MAX (pcf) W _{opt} (%)	g _d MAX (pcf) W _{opt} (%) (Corr.)	Dry unit wt. (pcf)	Test Moisture Content %	Target Test Setup as % of Proctor	CBR @ 0.1"	CBR @ 0.2"	Permeability cm/sec	Laboratory Log and Soil Description
				D2216	D4.	318			D6913		D2974	D4792	D1	557							
GZ-105	S-5	8-10	25-S-3227					1.3	78.0	20.7											Light Brown f-c SAND, some Silt, trace fine Gravel // Sand
GZ-110	S-9	20-22	25-S-3228					0.0	90.3	9.7											Light Brown fine SAND, trace Silt // Sand
GZ-110	S-10	22-24	25-S-3229					0.0	67.7	32.3											Light Brown fine SAND, some Silt // Loamy sand
																					2, 22, 22
		l			l	<u> </u>			Re	port rev	ised 09-	19-25 to	include USD	I A classificatio	n. KR	1	l				
<u> </u>																					

Date necessed. 3/12/2023 Newcord by.	Date Received:	9/12/2025	Reviewed By:	Date Reviewed:	9/17/2025
--------------------------------------	----------------	-----------	--------------	----------------	-----------

Devens, MA


01.0178186.00

Project No:

25-S-3227

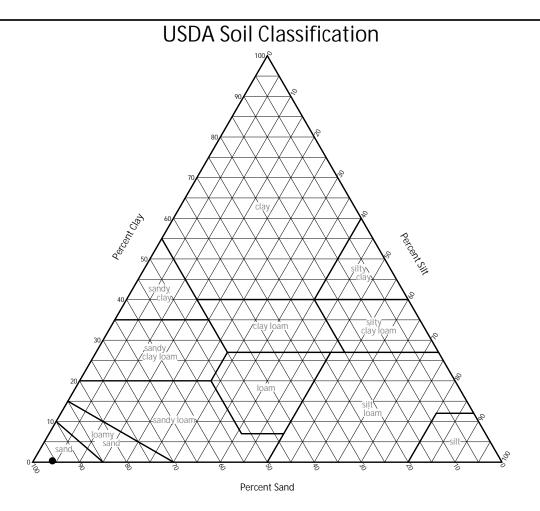
Tested By: AB/TG Checked By: Becca Blake

Cranston, RI

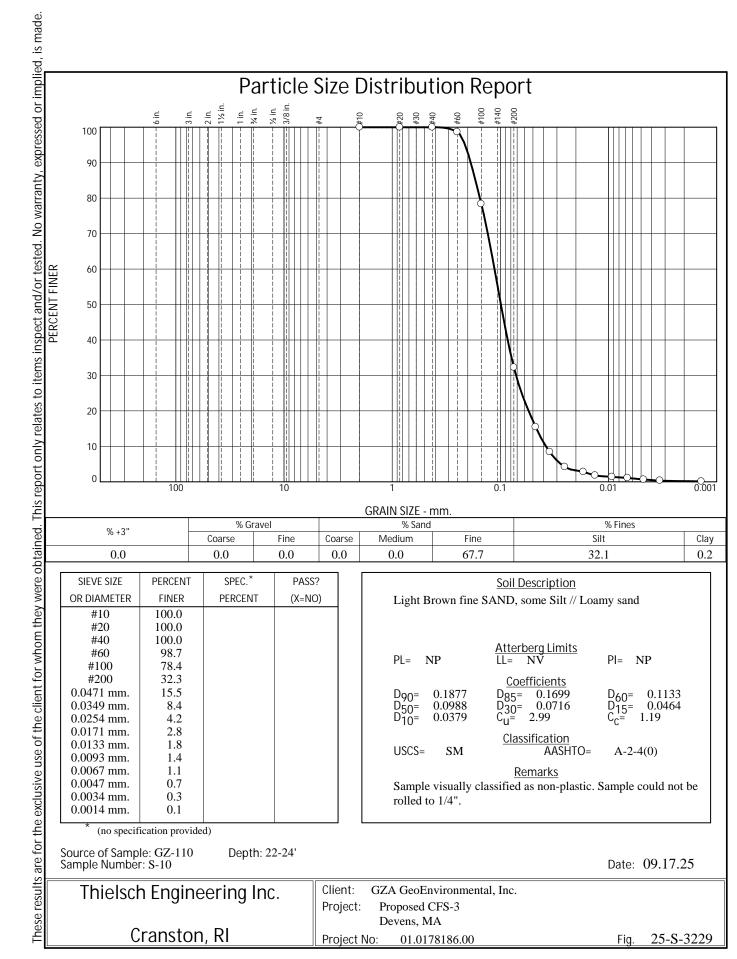
	SOIL DATA												
	Source	Sample	Depth		From Material Passin		Classification						
	Jource	No.		Sand	Silt	Clay	olassification						
	GZ-105	S-5	8-10'	86.8	12.4	0.8	Sand						
\vdash													
\vdash													
\vdash													
\Box													

Thielsch Engineering Inc.

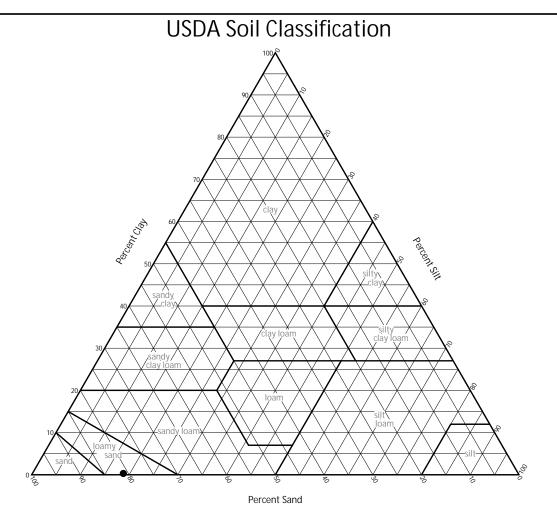
| Client: GZA GeoEnvironmental, Inc. |
| Project: Proposed CFS-3 |
| Devens, MA |
| Cranston, RI |
| Project No.: 01.0178186.00 |
| Fig. 25-US-3227


Thielsch Engineering Inc.

Project: Proposed CFS-3 Devens, MA


25-S-3228

Cranston, RI Project No: 01.0178186.00


Checked By: Becca Blake Tested By: AB/TG

	SOIL DATA												
	Source	Sample No.	Depth	Percentages Sand	From Material Passin Silt	g a #10 Sieve Clay	Classification						
•	GZ-110	S-9	20-22'	95.6	4.2	0.2	Sand						

Tested By: AB/TG Checked By: Becca Blake

				SOIL DA	ΛTA		
	Source	Sample	Depth		From Material Passir		Classification
-		No.		Sand	Silt	Clay	
	GZ-110	S-10	22-24'	81.0	18.8	0.2	Loamy sand

Thielsch Engineering Inc.

Client: GZA GeoEnvironmental, Inc.

Project: Proposed CFS-3

Cranston, RI

Devens, MA

Project No.: 01.0178186.00

Fig. 25-US-3229

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 T: 781.278.3700 F: 781.278.5701 F: 781.278.5702

www.gza.com

APPENDIX D

SLOPE/W EVALUATION RESULTS

Global Stability Analysis - CFS-4

Project No: 01.0174955.30

Project: Proposed CFS-4 Development

Location: Devens, MA

 Calculated By:
 KCP/MJO
 Date:
 11/12/2025

 Checked By:
 MAR/MJO
 Date:
 11/13/2025

Objective: Evaluate the global stability of the proposed critical slope, identified in Figure 2 of this report as Section A-A', at the western portion of the proposed CFS-4 development, which is in close proximity to a Slope Resource Area (SRA, as defined in Massachusetts State Regulation No. 974 CMR 3.06).

The critical slope section A-A' alignment extends from east to west through the proposed CFS-4 building and part of the south equipment pad area, an asphalt-paved roadway, the aforementioned retaining wall, and an existing slope leading into the SRA.

References: 1) Subsurface conditions are based on borings borings GZ-118, GZ-124, and GZ-130. Refer to Appendix B of this report for the boring logs.

- 2) Figure 2 of this report, which identifies the critical slope section.
- 3) A draft version of Level Two Permit drawings for the CFS-4 development project, prepared by VHB and transmitted to GZA on September 17, 2025.

Geometry & Based on information provided by VHB, the proposed critical slope passes through a proposed site retaining wall at the **Subsurface** existing/proposed western portion of the CFS-4 development. The proposed site retaining wall

Conditions: located in the western portion of the critical slope is assumed to be a modular block retaining wall resting at El. 261.0. The wall geometry is assumed based on a previous site retaining wall constructed at the CFS-2 development area.

Based on the relevant borings, and assuming existing unsuitable bearing soils (topsoil, buried topsoil, topsoil fill and fill) are removed and replaced with compacted granular fill, subsurface conditions are anticipated to generally consist of compacted fill over natural granular soils overlying glacial till and bedrock. The retaining wall is assumed to bear on natural granular materials.

Assumptions: 1) Soil strata and groundwater levels were interpreted from the above referenced borings.

- 2) Assume groundwater at approximate elevation 230 feet.
- 3) The global stability analysis was evaluated assuming static loading for proposed slope conditions using the computer program Slope/W from GeoStudio, using the Spencer solution for the method of slices.
- 4) Failure surfaces that pass through the limits of the proposed retaining wall have been excluded.
- 6) The minimum factor of safety is assumed to be 1.5 for static loading.
- 7) Loads from roadways and building located within the zone of influence were considered and modeled as surcharge loads "250 PSF" for roadway, "6,000 PSF" in assumed building footing areas, and "730 PSF" in assumed building slab areas in SLOPE/W. Building area surcharge loads are applied at the bottom of proposed fill, and the weight of new fill is included in the surcharge loadings.

Rev. 0

Global Stability Analysis - CFS-4

Project No: 01.0174955.30

Project: Proposed CFS-4 Development

Location: Devens, MA

 Calculated By:
 KCP/MJO
 Date:
 11/12/2025

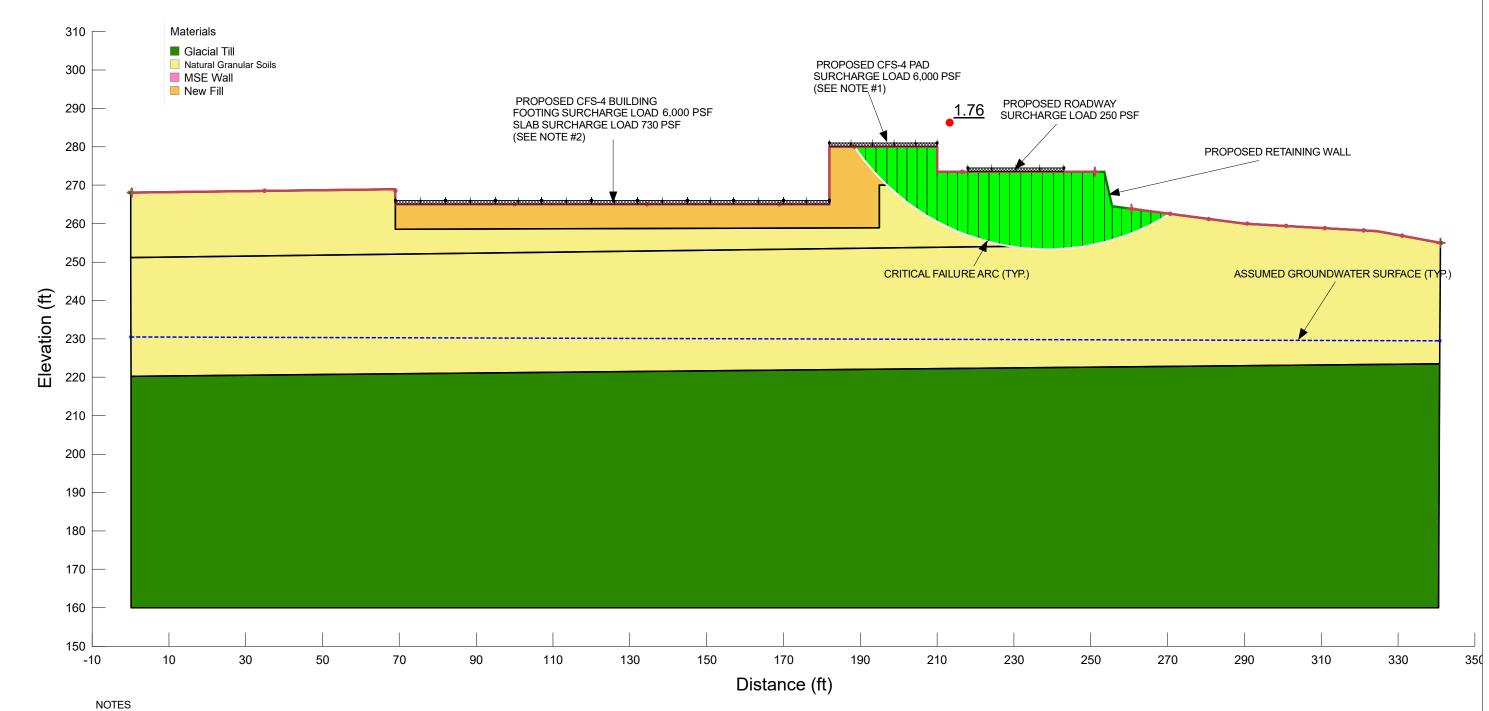
 Checked By:
 MAR/MJO
 Date:
 11/13/2025

Table 1: Material Properties for Global Stability Model:

	Total Unit	Effective Strength			
Slope/W Soil Type	Weight, γ _t (pcf)	Cohesion, c' (psf)	Friction Angle, Φ'(Degree)	Notes	
Existing Subsurface Soils					
Natural Granular Soil	125	0	34	(1),(2)	
Glacial Till	135		37	(1),(2)	
Construction Materials					
New Fill	125	0	36	(1),(2)	
Retaining Wall	120				

¹⁾ The friction angles (ϕ) are based on empirical correlation to N₁₍₆₀₎, for recently performed borings, by Peck, Hanson, & Thornburn (1974) as mentioned by Kulhawy & Mayne (1990).

Table 2: Summary of Global Stability Results


Analysis	Analysis Method	Resultant Factor of Safety
A-A' Alignment	Spencer	1.76

The results of the stability analysis indicate a factor of safety for global slope stability of approximately 1.76 indicating adequate resistance to slope failure with static loading for the proposed critical slope section A-A' of the CFS-4 development based on our understanding of the subsurface conditions.

Attachments: Stability Model Input Summary, Stability Model Output

Rev. 0

²⁾ The unit weights are based on prior experience with similar soils on other projects.

NOTES
1) To model the loading condition at the CFS-4 equipment pad, an assumed pad loading was applied as a 6,000 psf surcharge load at elevation (EI.) 281 feet.
2) To model the loading condition for the CFS-4 building, the slab loading, footing loading, and new fill loading up to EI. 269 were applied as surcharge loads at elevation 265. The slab surcharge includes 250 psf of assumed surcharge on top of the floor slab and 480 psf surcharge for the 4 feet of proposed new fill from EI. 265 to 269 feet. The footing surcharge includes 6,000 psf of assumed footing loading and 480 psf of surcharge for 4 feet of new fill from EI. 265 to 269 feet.

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)	Phi-B (°)	Piezometric Surface
	Glacial Till	Mohr-Coulomb	135	0	37	0	1
	Natural Granular Soils	Mohr-Coulomb	125	0	34	0	1
	MSE Wall	High Strength	120				1
	New Fill	Mohr-Coulomb	125	0	36	0	1

CFS-4 SLOPE STABILITY ANALYSIS A - A' ALIGNMENT

111 HOSPITAL ROAD DEVENS, MASSACHUSETTS 01434

PREPARED BY:				
	GZA GeoEnvironmental, Inc.			
GZ\)	Engineers and Scientists			
	www.gza.com			

PREPARED FOR:

Commonwealth Fusion Systems 148 Sydney Street Cambridge, Massachusetts 02139

L	PROJ MGR: MJO	REVIEWED BY: MAR	FIGURE
	CALCULATED BY: K	2	
	DATE: 11/12/2025	PROJECT NO.: 01.0174955.30	၁